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A fractional Burgers equation with variable coefficients is studied, which can de-
scribe heat conduction in nanomaterials with intermittent property. The equation 
is solved analytically by Daftardar-Gejji-Jafaris method. 
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Introduction 

In this paper, we study the approximate solution of a fractional Burgers’ equation 
with variable coefficients of the type: 
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with the initial condition: 

( , ) ( )u x t f x= (2) 

Here, λ(x, t) is the given function. Equation (1) arises in the mathematical modeling 
of various physical phenomena, such as heat exchange in nanomaterials [1-12]. Moreover, the 
Burgers’ equation with variable coefficient can be used to describe the cylinder and spherical 
wave in overfall, and traffic flow, see for example [8, 13, 14]. The time-fractional term in 
eq. (1) implies that at the measured time period, time is discontinuous and it has intermittent 
property, for example, a traffic flows at the daytime and at the night-time have obvious differ-
ence. When α = 1 the traffic flow has the same properties throughout the whole day, when 
α = 0 the traffic flow does not change with time. Such intermittent motion can be best de-
scribed by the time-fractional model.  

In eq. (1): 
1– ( , )D ( , ) Jt t

u x tu x t
t
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is the Caputo fractional derivative of order α, Jt
µ denotes the Riemann-Liouville fractional in-

tegral operator of order μ ≥ 0 and is given by: 
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The following properties can be found in [26, 27]: 
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In the last two decades, some numerical and analytical methods for solving fraction-
al differential equations have been extensively studied by many authors [18-25]. The 
Daftardar-Gejji-Jafaris (DGJ) method was proposed by Daftardar-Gejji, Varsha, and Hossein 
Jafari in [15, 16]. It is a powerful tool to searching for approximate solutions of non-linear 
problems. Recently, Daftardar-Gejji, Varsha and Sachin Bhalekar [17] found the exact solu-
tion and approximate solution of fractional differential equations using DGJ method. 

The DGJ method 

To illustrate the DGJ method (DGJM) [15, 16], we consider the following general 
function equation: 

 ( ) ( )u L u N u f= + +  (7) 

where L is a linear operator, N – a non-linear operator from a Banach space B → B, and f – a 
known function. We are looking for a solution u of eq. (7) having the series form:  
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The non-linear operator N can be decomposed: 
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From eqs. (8) and (9), eq. (7) is equivalent to:  

 
–1

0
0 0 1 0 0

( ) ( ) –
i i

i i j j
i i i j j

u f L u N u N u N u
= = = = =

    
= + + +             

∑ ∑ ∑ ∑ ∑
¥ ¥ ¥

  (10) 

We define the recurrence relation: 

 0 ( )u f x=  

 1 0 0( )u L u G= +  

 ( ) , 1,2...m m mu L u G m= + =  (11) 

where  
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Then k-term approximate solution of eq. (7) is given by: 

 0 1 –1... ku u u u= + + +  (14) 

Fractional Burgers equation 

In this section we derive the main algorithms of the DGJM for solving fractional 
Burgers equations with variable coefficients. 

To apply DGJM, by eq. (6), we can rewrite the eq. (1): 

 ( , ) ( ,0) ( ) – ( )u x t u x L u N u= +  (15) 
where 
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Suppose that the solution of eq. (15) takes the form: 
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and the non-linear term in eq. (15) is decomposed: 
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and so on. 
Thus according to eq. (11), approximate solution can be obtained:  
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For example, we consider eq. (1) in the form: 
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with the initial condition u(x, 0) = x. 
By the previous algorithms, we obtain: 
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Thus, the 3-term approximate solution of eq. (20) is given by: 

 0 1 2( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t= + +  

The accuracy of the DGJM based on absolute error (AE) are shown in tabs. 1 and 2. 

Table 1. u = 6 – term approximate solution  
of eq. (20). AE = |Dt

αu + tuux – uxx| 

t x α AE 

0.5 

0.5 

0.5 

0.054286578·10–4 

0.7 0.150004787·10–4 

0.9 0.596447498·10–4 
 

 
Table 2. u = 6 – term approximate solution  
of eq. (20). AE = |Dt

αu + tuux – mxx| 

x t α AE 

0.2 

0.2 

0.5 

0.051655319·10–4 

0.4 0.044552560·10–4 

0.6 0.645009601·10–4 
 

Conclusion 

We presented the application of DGJM to a fractional Burgers’ equations with vari-
able coefficients. The DGJM gives series solutions of the equation. Compared to the other 
methods, the DGJM is direct and effective. Furthermore the solution reveals that the intermit-
tent property depends upon the value of the fractional order. 
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