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This communication explores the MHD flow of third grade fluid bounded by a 
stretching surface with homogeneous-heterogeneous reactions. Incompressible 
fluid is electrically conducting in the presence of constant magnetic field. Heat 
transfer is performed through exponential based space internal heat source, 
non-linear thermal radiation and convective boundary condition. Non-linear 
differential systems are computed by homotopic technique. Intervals of conver-
gence through numerical data and plots are explicitly determined. The dimen-
sionless velocity, temperature, and concentration distributions manifesting the 
characteristics of various influential parameters are addressed. The skin fric-
tion coefficient and local Nusselt number are also addressed. Clearly tempera-
ture is enhanced by radiation, temperature ratio, and magnetic parameters.
Key words: non-linear thermal radiation, MHD, exponential based heat source, 

homogeneous-heterogeneous reactions

Introduction

Investigation of non-Newtonian fluids such as paints, cosmetic products, colloidal 
fluids, suspension fluids, shampoos, blood at low shear rate, ice cream, mud, polymers, etc. is 
current area of research for the recent researchers. It is due to their wide uses in engineering and 
industrial processes. The non-Newtonian fluids in comparison Newtonian fluids are not easy 
to analyze. Certainly the diverse behaviors of non-Newtonian fluids cannot be described by 
Newton’s law of viscosity. There is always non-linear link between the shear stresses and shear 
rate in the case of non-Newtonian fluids. Several models of non-Newtonian fluids for their 
diverse characteristics are suggested. Mainly such liquids have been classified into three main 
branches namely the integral, differential and rate types. A simple subclass of differential type 
fluids is known as second grade describing normal stress only. Note that second grade fluid do 
not predict shear thinning and shear thickening. Third grade fluids capture shear thinning/shear 
thickening effects even in 1-D steady flow. No doubt there is a sizeable informations for flows 
of third grade fluids at present. Few representative studies in this direction can be seen by the 
attempts [1-11]. 
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The heat transfer in boundary-layer flow over a stretching surface has relevance in 
processes like food processing, cooling of large metallic plat in a bath, glass fiber production, 
manufacturing of rubber and plastic sheets, wire drawing and many others. Crane [12] was 
the first who explored the boundary-layer flow caused by stretching sheet. Bhattacharyya [13] 
numerically discussed the heat transfer in boundary-layer flow induced by an exponentially 
stretching surface. Here shooting method is utilized for the solution procedure. Mukhopad-
hyay [14] analyzed the slip effects in unsteady mixed convective flow and heat transfer over 
a stretching surface. Hydromagnetic-flow and heat transfer in flow of viscoelastic fluid is ex-
amined by Turkyilmazoglu [15]. Heat transfer and partial slip in MHD flow past a porous 
shrinking surface explored Zheng et al. [16]. Hayat et al. [17] developed the series solutions for 
heat transfer in unsteady flow of Jeffrey fluid over a stretching sheet. Mixed convection flow of 
viscoelastic fluid over a surface with heat transfer presented by Hayat et al. [18]. Some other 
related attempts are communicated in [19-28].

In nature there is a wide range of chemical reactions having useful practical appli-
cations. Some of the reactions have the capability to proceed moderately or do not react at all 
without catalyst. In general the contact between the heterogeneous and homogeneous chemical 
reactions is very complicated. Such reactions link the consumption and production of the reac-
tant materials at distinct rates both within the fluid and on the surface of catalyst. Merkin [29] 
studied a problem for isothermal homogeneous-heterogeneous reactions in boundary-layer flow 
over a flat plate. The effects of forced convection and homogeneous-hetrogeneous reactions in 
stagnation point flow was explored by Chaudhary and Merkin [30]. Khan and Pop [31] inves-
tigated the flow of viscoelastic fluid over a stretching sheet with homogeneous-hetrogeneous 
reactions. Flow of Maxwell fluid over a stretching surface with homogeneous-heterogeneous 
reactions was investigated by Hayat et al. [32]. The characteristics of melting heat and heteroge-
neous-homogeneous reactions in the flow of viscoelastic fluid was presented by Hayat et al. [33].

Here our prime focus for four aspects. Firstly to consider third grade fluid model with 
characteristics of MHD. Secondly to utilize the convective heat transport analysis in flow by 
stretched surface. Thirdly to perform analysis in the presence of homogeneous-heterogeneous 
reactions. Fourth to develop the series solutions through homotopic technique [34-40]. Sketch 
of different parameters are presented and discussed in detail. The results of skin friction coeffi-
cient and local Nusselt number are also analyzed.

Mathematical modelling and constitutive expression

Here we intend the 2-D flow of an incompressible third grade fluid over a linear 
stretching sheet. A constant magnetic field, B0, is implmented parallel to the y-axis. Induced 
magnetic field is not accounted due to the consideration of small Reynolds number. Heat trans-
port is inspected through exponential based space internal heat source and non-linear thermal 
radiation. A Cartesian co-ordinate is assumed in such a manner that the x-axis is selected along 
the stretched surface with velocity Uw = cx and y-axis is transverse to it. The convectively heat-
ed surface is expressed by heat transport coefficient, hf, and hot fluid temperature, Tf. Aspects 
of heterogeneous-homogeneous reactions are intended. The isothermal cubic autocatalytic re-
action (homogeneous) and the first order reaction (heterogeneous) on the surface of catalyst is 
demonstrated by [29, 30]:

22 3 , rate cA B B K ab+ → = (1)

,  rate sA B K a→ = (2)
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The concentrations of the chemical species A and B are a and b while Kc and Ks are 
the constants. Both the reaction processes are assumed to be isothermal. The governing bound-
ary-layer expressions can be put into the form [41-43]:
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The related boundary conditions:
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In previous expressions (u, v) corresponds to the velocity components parallel to x- 

and y-directions, µ is the dynamic viscosity, n – the kinematic viscosity, ρ – the fluid density, 
n – the exponential index, α1, α2, and α3 – the material constants, σ – the electrical conductivity, 
αm – the thermal diffusivity of fluid, c – the stretching rate, DB and DA – the diffusion coefficients 
of B and A, and a0 – the positive dimensionless constant, a and b – the concentration of chemi-
cal species, T and T∞ the surface and ambient temperatures, respectively. Through Rosseland’s 
approximation the radiative heat flux qr is [44]:
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in which σ** shows the Stefan-Boltzman and m** designates the coefficient of mean absorption. 
Invoking eq. (10) the energy equation can be reduced to the form:
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The transformations are taken in the form:
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Invoking previous definitions, the continuity eq. (1) is now identically satisfied and 
eqs. (4)-(9) and eq. (11) become:
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where β1, β2, and ε1 are the material parameters for third grade fluid, ε2 – is the local Reynolds 
number, M – the represents the magnetic parameter, δ – the internal heat source parameter, 
Rd – the radiation parameter, Pr – the stands for Prandtl number, γ – the Biot number, θw – the 
temperature ratio parameter, K1 – the strength of homogeneous reaction parameter, δ – the dif-
fusion coefficient ratio, K2 – the strength of heterogeneous reaction, Sc – the Schmidt number 
and prime designates differentiation with respect to η. These quantities are expressed:
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where comparable size is presumed for the coefficients of diffusion of chemical species B and 
A. This fact provides us to establish further supposition that the coefficients of diffusion DA and 
DB are same i. e. δ = 1 and thus:

( ) ( ) 1g hη η+ = (20)

Now eqs. (13)-(14) give:
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and the corresponding boundary conditions:
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Expressions for velocity gradient, Cfx, and temperature gradient, Nux:
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where
32 2

1 32
00

2 2 ,  w w
yy

u u u u u u Tu q k
y x y x y y yy

τ µ α υ α
==

      ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + = −      ∂ ∂ ∂ ∂ ∂ ∂ ∂∂      

(24)

The dimensionless form of eq. (23) gives:
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where Re is the Reynolds number defined by Re = Uwx/n. 

Series solutions and convergence

The initial guesses and operators are given:
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In homotopic solutions, the rate of deformation and convergence region highly de-
pend upon ћf, ћθ, and ћg. For such interest, the ћ-curves have been plotted in fig. 1 at 16th 
order of deformations. Such curves provide the admissible ranges of these auxiliary param-
eters. It is clear from this fig. 1 that the suitable ranges of these parameters are [–1.0, –0.1],  
[–1.4, –0.4], and [–1.1, –0.2]. Besides that the series solutions are convergent in all region of η
when ћf  = – 0.4 = ћθ  = ћg, fig. 2.  Table 1 shows that 30th order of approximations up to four 
decimal places are adequate for good agreement regarding convergence.
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Figure 1. The ћ-curve for f(η) Figure 2. The ћ-curves for θ(η) and g(η)



Hayat, T., et al.: Impact of Temperature Dependent Heat Source and ... 
1178 THERMAL SCIENCE: Year 2020, Vol. 24, No. 2B pp. 1173-1182

Table 1. Convergence of homotopic solutions when Rd = 0.4 =δ, θw = 0.3, 
ε1= ε2 = 0.2 = M = γ, β1 = 0.1 = β2, Pr = 1.0, K1 = 0.5 = K2, Sc = 0.9

Order of approximations f ″(0) – θ ′(0) g ′(0)
1 0.8550 0.0895 0.2410
10 0.8126 0.0855 0.2394
20 0.8127 0.0851 0.2516
30 0.8127 0.0850 0.2550
40 0.8127 0.0850 0.2550
45 0.8127 0.0850 0.2550
50 0.8127 0.0850 0.2550
60 0.8127 0.0850 0.2550

Results and discussion

This portion focuses for the impact of distinct influential parameters on the dimen-
sionless velocity f ′(η), temperature θ(η), and concentration g(η) profiles. These outcomes are 
interpreted via graphs in the figs. 3-14. The consequences of magnetic parameter, M, on the ve-
locity distribution,  f ′(η), can be seen in fig. 3. For larger magnetic parameter the velocity field 
reduces close to the surface and it vanishes away from the surface. It is quite obvious because 
larger magnetic parameter corresponds to enhancement of Lorentz forces thereby reducing the 
velocity profile f ′(η). Figure 4 investigates the impact of material parameter β1 on f ′(η). It is 
seen that velocity distribution increases when we enlarge β1. The characteristics of material 
parameter β2 on the velocity field is sketched in fig. 5. It is concluded that higher values of β2 
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corresponds to an enhancement in the fluid velocity. In fact higher values of material parameter 
tend to enhance the normal stresses and it reduces the viscous forces which lead to increase the 
fluid velocity. Figure 6 declared the aspect of Rd on θ(η). Here bigger values of Rd augments 
the thermal field. As expected heat is produced due to radiation process in the working fluid so 
thermal distribution enhances. Figure 7 presents the variations in magnetic parameter on the 
temperature distribution θ(η). It is well known established fact that the magnetic field intensity 
tends to create drag force which restricts the fluid motion and heats up the fluid. There is rise in 
the temperature and thickness of thermal boundary-layer. Note that the case M = 0 corresponds 
to hydrodynamic flow situation. Feature of δ on θ(η) is pointed out in fig. 8. It is figure out 
that thermal field is enhances via δ. Figure 9 illustrates the consequences of Biot number, γ, on 
the temperature filed θ(η). It is noticed that both temperature and thermal layer thickness are 
increasing functions of Biot number. Figure 10 depicts the change of temperature in response 
to change in the θw . Both thermal field and associated layer thickness are enhance when θw is 
enlarged. Figure 11 portrays the influence of Prandtl number on the temperature profile θ(η). 
Fluids of higher Prandtl have minimum thermal conductivities so that heat can spread away 
from the plate slower than for smaller Prandtl number fluids. Hence rise in Prandtl number sub-
stantially decreases the temperature and thickness of thermal boundary-layer. Larger strength of 
homogeneous reaction K1 shows a reduction in concentration distribution g(η), see fig. 12. Fig-
ure 13 explores the impacts of strength of the heterogeneous reaction K2 on the concentration 
profile g(η). There is an increases in concentration field g(η) for larger values of K2.

 Figure 14 shows the impact of Biot number and Prandtl number on Nusselt number. It 
is examined that by increasing γ and Prandtl number the Nusselt number enhances. Numerical 
data of skin friction coefficient –(Re)1/2Cfx for pertinent flow parameters including ε1, ε2, M, β1, 
β2, Prandtl number, and γ are presented in tab. 2. It is found that the coefficient of skin friction 
increases for higher values of Prandtl number and M whereas opposite effect is observed for γ. 
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Table 2. Numerical estimations of drag force –(Re)1/2Cfx for various values of ε1, ε2, M,  
β1 and β2 when Rd = 0.4 = δ, θw = 0.3, Pr = 0.9, γ = 0.1, K1 = 0.5 = K2, and Sc = 0.9 

ε1 ε2 β1 β2 M –(Re)1/2Cfx 
0.2 0.2 0.1 0.1 0.2 1.0835
0.3 1.1067
0.6 1.1274
0.2 0.0 0.1 0.1 0.2 1.0835

0.3 1.1067
0.7 1.1339

0.2 0.1 0.0 0.1 0.2 0.9814
0.2 1.2064
0.4 1.3964

0.2 0.2 0.1 0.0 0.2 1.1539
0.2 1.0041
0.5 0.9244

0.2 0.2 0.1 0.1 0.0 1.0779
0.4 1.1616
0.8 1.3858

Conclusions

Homogeneous-heterogeneous reactions in MHD flow of third grade fluid over a 
starching sheet are explored. Main results are as follows.
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 y The characteristics of material parameters β1 and β2 has similar effects on the velocity field.
 y Increasing values of M show opposite behavior for the velocity and temperature fields.
 y An enhancement in convective parameter γ shows an increment in temperature field.
 y Temperature field is enhancing function of δ, Rd, and θw. 
 y The heterogeneous and homogeneous reactions strengths show an opposite behavior on 

concentration field. 
 y Magnitude of skin friction coefficient is increasing functions of β1 and M. 
 y Local Nusselt number represents the opposite behavior for higher values of M and Prandtl 

number.
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