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In the current paper, the peristaltic transport of a non-Newtonian fluid obeying a 
Casson model with heat and mass transfer inside a vertical circular cylinder is 
studied. The considered system is affected by a strong horizontal uniform mag-
netic field together with the heat radiation and the Hall current. The problem is 
modulated mathematically by a system of PDE that describe the basic behavior 
of the fluid motion. The boundary value problem is analytically solved with the 
appropriate boundary conditions in accordance with the special case, in the ab-
sence of the Eckert number. The solutions are obtained in terms of the modified 
Bessel function of the first kind. Again, in the general case, the system is solved 
by means of the homotopy perturbation and then numerically through the Run-
ge-Kutta Merson with a shooting technique. A comparison is done between these 
two methods. Therefore, the velocity, temperature and concentration distribu-
tions are obtained. A set of diagrams are plotted to illustrate the influence of the 
various physical parameters in the forgoing distributions. Finally, the trapping 
phenomenon is also discussed.
Key words: peristaltic flow, Casson model, hall current, porous medium,  

heat and mass transfer

Introduction

The mechanism of peristalsis, in both mechanical and physiological situations, has 
become of great importance in many scientific researches. Several theoretical and experimental 
attempts have been made to understand peristaltic influence in different situations. The scien-
tists have exerted their efforts concerning the peristaltic flow of liquids. The problem of peristal-
sis with heat and mass transfer is analyzed by Hina et al. [1], chemical reaction is taken into ac-
count. Their study not only based on long wavelength and low Reynolds number approximation 
but also on a small Grashof number. Peristaltic flow of viscous fluid in an asymmetric inclined 
channel with heat transfer and the influence of an inclined magnetic field are studied by Noreen 
et al. [2]. In their work, long wavelength and low Reynolds number approximation is utilized. 
Peristaltic motion of a non-Newtonian nanofluid with heat transfer through a porous medium 
inside a vertical tube is investigated by El-Dabe et al. [3]. Runge-Kutta Merson method and a 
Newtonian iteration in a shooting and matching technique are also utilized. The influence of 
heat and mass transfer on the peristaltic flow of magneto hydrodynamic Eyring-Powell fluid is 
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discussed by Shaaban et al. [4]. Finite-difference technique is used for solving their governing 
system of equations. The impact of compliant walls on peristaltically induced flow of Sutterby 
fluid in a vertical channel is studied by Hayat et al. [5]. The problem formulation is based on 
neglecting the inertial effects and using long wavelength approximation. In their work, they 
observed that the velocity and temperature distributions are greater than of viscous fluid. The 
effects of partial slip on the peristaltic flow of a MHD Newtonian fluid are analyzed by Nadeem 
et al. [6]. The solutions of the governing system of equations are obtained by means of Ado-
mian decomposition method. They observed that the temperature distribution decreased with 
the increasing of slip parameter and magnetic field parameter. Meanwhile, it increased with the 
increasing of the Eckert number. 

The Hall effect is an ideal magnetic field sensing technology, the influence of the Hall 
current on a rotating unsteady flow of a conducting second grade fluid on an infinite oscillating 
plate is analyzed by Hayat et al. [7], also, the Laplace transform and the regular perturbation meth-
od are utilized to obtain the solutions of the governing equations. They observed that the bound-
ary-layer thickness had increased with the increasing of the Hall parameter at fixed magnetic field 
parameter. Peristaltic transport obeying Walter’s B fluid in an asymmetric channel is discussed 
by Mehmood et al. [8]. Their problem is affected by heat and mass transfer, regular perturbation 
method is utilized for solving their governing system of equations of motion. The peristaltic flow 
of an incompressible, electrically conducting Williamson fluid is investigated by Eldabe et al. 
[9]. Hall effects, viscous dissipation and Joule heating are taken into account. Peristaltic motion 
induced by sinusoidal traveling wave of incompressible, electrically conducting Maxwell fluid is 
discussed by El-Koumy et al. [10], Hall current with constant magnetic field is taken into account 
and perturbation expansion in terms of small amplitude ratio is utilized to obtain their solutions.

Casson fluids are found to be applicable in developing models for blood oxygenator. 
The MHD flow and heat transfer of electrically conducting viscoelastic fluids is analyzed by 
Akbar et al. [11]. Casson model is utilized to describe the viscoelastic behavior. They found that 
the temperature is increased with the increasing of the Casson parameter, Hartmann number, 
velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. In 
addition, they found that the increasing in Casson parameter led to increase in the size of the 
trapped bolus. Casson fluid-flow over a vertical porous surface with chemical reaction in the 
presence of magnetic field is investigated by Arthur et al. [12]. Their system of PDE, which 
describe the problem, is solved numerically by means of the Newton-Raphson shooting method 
with the aid of the Fourth order Runge-Kutta algorithm. Viscous incompressible electrically 
conducting micropolar flow is investigated by Ali et al. [13]. Thermal radiation and viscous dis-
sipation are taken into account. Quasi linearization technique is utilized to solve their coupled 
system of ODE. The impact of pressure stress work and thermal radiation on free convection 
flow around a sphere is studied by Elbashbeshyet al. [14]. Porous medium with Newtonian 
heating are taken into consideration. Finite difference technique is utilized to solve their system 
of non-linear PDE. Radially varying magnetic field effect on peristaltic motion obeying Jeffery 
model between two co-axial tubes is analyzed by Eldabe and Abou-Zeid [15]. Heat and mass 
transfer are taken into consideration. Their system of equations is solved analytically using 
regular perturbation technique.

The aim of this paper is to extend the work of Vasudev et al. [16] but in case of the 
non-Newtonian fluid which obeying Casson model [12]. The present work includes, also, the 
concentration equation. Hall current with heat and mass transfer are taken into account as well 
as viscous dissipation, chemical reaction and radiation absorption. The boundary value problem 
is analytically solved with the appropriate boundary conditions in accordance with the special 
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case, in the absence of the Eckert number. The 
solutions are obtained in terms of the modified 
Bessel function of the first kind. Again, in the 
general case, the system is solved analytically 
by means of the homotopy perturbation meth-
od and numerically using Runge-Kutta Merson 
with the shooting technique. A comparison is 
done between these two methods. Therefore, 
the velocity, temperature and concentration dis-
tributions are obtained. A set of diagrams are 
plotted to illustrate the influence of the various 
physical parameters in the forgoing distribu-
tions. Finally, the trapping phenomenon is dis-
cussed and illustrated. 

Mathematical formulation of the problem

Consider the peristaltic flow of an in-
compressible non-Newtonian fluid through a 
vertical tube. The axisymmetric cylindrical po-
lar co-ordinate system (R, Z) are used, where 
R-co-ordinate is along the radial co-ordinate of 
the tube and Z-co-ordinate coincides with axis 
of the tube see fig. 1. 

The geometry of the tube wall is defined:

( ) ( )2
, sin

Z ct
R H Z t a b

λ
 π −

= = +  
  

(1)

For the unsteady 2-D flow, the velocity components, temperature and concentration 
may be written: 

	 ( ) ( ) ( ) ( ), , 0, , , , , ,  V U R Z W R Z T T R Z C C R Z = = = 

The appropriate boundary conditions are defined [16]:

0,    0 , 0 at 0W T C R
R R R

∂ ∂ ∂
= = = =

∂ ∂ ∂
(2)

0 00, ,  at W T T C C R H= = = = (3)
Introducing the following transformations between the fixed and moving frames: 

, , z Z ct r R w W c= − = = − (4)

The current density J including the Hall effect may be written [9]:

( ) 1[ (  )]
e

J V B J B
en

σ= ∧ − ∧ (5)

The governing dimensional equations of motion may be listed: 
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r r z
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(6)
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It is convenient to write the aforementioned eqs. (6)-(10) with the boundary condi-
tions (2) and (3) after a transformation in an appropriate dimensionless form. This can be done 
in a number of ways depending primarily on the choice of the characteristic length, mass and 
time. Consider the following dimensionless forms: 

The characteristic length, a, the characteristic mass, ρa3, and the characteristic time, 
a/c. The other dimensionless quantities:
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	 The governing equations of motion in dimensionless form after using eq. (11) and 
dropping the bar mark may be listed: 
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Also, the dimensionless appropriate boundary-conditions:
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The aforementioned equations of motion are non-linear PDE. They cannot be solved 
in their present form. Therefore, an approximation solve these equations is considered. At this 
stage, under the assumptions of long wavelength approximation, δ ≪ 1, and low Reynolds 
number, Re → 0, these equations may be written: 
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It is worthwhile to notice that eqs. (13)-(16) are more general than these early ob-
tained by Vasudev et al. [16]. In other words, on setting (m = 0, GrC = 0, Rn = 0, Sc = 0, Sr = 0, 
Ec = 0, β → ∞, and γ = 0), one finds his previous equations (Newtonian case).

Method of solution

Solution in the special case, Ec = 0 

To relax the mathematical manipulation in solving the resulted eqs. (20)-(23), the 
presence of the Eckert number is ignored. In this case, these equations are easily solved to yield 
the following solutions:
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where, I0(..) is the modified Bessel function of the first kind and zero order:
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NL nβ γ
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+

Solution in the general case, Ec ≠ 0

Homotopy perturbation solution

In order to consider the general case, in the presence of the Eckert number, a perturba-
tion technique may be useful. Therefore, homotopy pertubation method (HPM) is utilized. This 
method is considered as one of the recent perturbation methods. It can be used to solve the or-
dinary as well as PDE. It combines between the advantages of the homotopy analysis method 
(HAM) and the regular perturbation methods. The HPM is first introduced by He [17]. The HPM 
has been successfully applied in a different range of linear as well as non-linear differential equa-
tions by [18-21]. The method provides us, in a convenient way, an analytical or approximation 
solution in a wide variety for many problems arising in various fields. Away from the classical and 
the traditional perturbation methods, the HPM need not a small parameter or a linearization of the 
zero-order equation. Therefore, through this method, one can put a small parameter p ∈ [0, 1], p is 
termed as the embedded homotopy parameter, as a coefficient in any term of the problem. When 
p = 0, the differential equation takes a simplified form at which it may has an analytical solution. 
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As p is increased and eventually takes the unity, the equation evolves the two required form. At 
this step, the expected solution will approach to the desired form.

The HPM is based on the initial approximation, keep in mind that this approximation 
must satisfy the system of the differential equations as well as the corresponding boundary- 
-conditions. For this purpose, the following relations are defined:
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Any of the distribution functions w, θ, and Φ may be written: 
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On using the previous power series on the eqs. (27)-(29) and equating the coefficients 
of like powers of p on each of them and solving the resulted equations, one obtains the solutions 
of the different stages of pn the procedure is lengthy but straightforward. The complete solution 
is obtained by setting p = 1. The power series up to the second-order for each of the forgoing 
distributions may be written: 
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    −
= − + − + + − +            

  
+ + −      

(34)
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The constants a1, M1-M11 are defined but excluded here to save space.

Numerical solution

From the forgoing analysis, first the influence of the Eckert number is ignored and, 
secondly when this influence is considered we use the HPT. Now, the whole problem may be 
solved in accordance with a numerical method. On using the Runge-Kutta Merson with shoot-
ing technique, assume the following steps: 

Consider the following transformations:

1 3 5, andw Y Y Yθ Φ= = = (35)
Therefore, eqs. (20)-(23) may be written:

( )2
1 2 2 2 1 3 5

1 1 d ,   1 Gr Gr
1 d1

T C
PY Y Y Y N Y Y Y

r z
β

 
    ′ ′= + = + + − −    + 
 

(36)

( )23 4 4 4 1 1 2
1 1 ,   1 EcY Y Y Y a Y
r

β
β

 
 

 ′ ′= + =− + + 



 

(37)

5 6 6 6 5 4 4
1 1,   S S  c cSrY Y Y Y Y Y Y
r r

γ  ′ ′ ′= + = − +  
(38)

where the prime denotes to differentiation with respect to r.
The related boundary conditions in accordance with eqs. (36)-(38), may be written:

1 3 5 0,  0   and     0         0Y Y Y at r′ ′ ′= = = = (39)

1 3 5 1,  0   and     0      at     Y Y Y r h=− = = = (40)
To compute the physical quantities w, θ, and Φ, MATHEMATICA package version 

9 is used to solve the governing system of eqs. (36)-(38) along the appropriate boundary con-
ditions (39) and (40). Therefore, modified Newton-Raphson iteration method continues until 
convergence is achieved [3] and [22].

Now, Nusselt number may be defined:

Nu
r hr

θ

=

∂ =  ∂ 
(41)

Numerical discussions

In order to illustrate the quantitative effects of the different physical parameters of the 
problem on the distributions of the axial velocity, w, temperature, θ, and concentration, Φ, the 
MATHEMATICA software (package 9) is utilized. The effects of the physical parameters such 
as, Hall parameter, modified Grashof number, the radiation parameter, Eckert number, pressure 
gradien, dP/dz, Darcy number, and the non-dimensional heat source/sink parameter on these 
distributions are discussed numerically, graphically and illustrated through some figs. 2-4.

The variation of axial velocity, w, vs. the radial co-ordinate, r, for different values 
of Rn, modified Grashof number, GrC, m, Da, Ec, β1, and dP/dz is illustrated. To make a good 
comparison between the HPT and the Runge-Kutta numerical technique, the following figures 
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are characterized by the two symbols H and N to indicate the HPM and numerical calculations, 
respectively. The effect of the Hall parameter on the axial velocity is illustrated in fig. 2. It is 
observed that the velocity w decreases with the increasing of m. This is in a good agreement 
with the results that first obtained by Hayat et al. [7]. The influence of is studied, we observed 
that the axial velocity w increases with the increasing of Eckert number. Physically, this result 
are realistic, because of the magnetic field is considered as a retardant force of motion. Also, the 
increasing of Eckert number makes an increasing of the fluid temperature and this alternately 
increases the fluid-flow. To keep spaces we exclude this figure. At the same time, the numerical 
calculation shows that the non-dimensional Parameter, β1, behaves like Eckert number. On 
the other hand, the other parameters of the problem behave like m. To avoid the repetition, we 
exclude these figures.
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Figure 2. The axial velocity w plotted vs. r under the effect of m for M = 1, Da = 0.9, GrT = 0.1,  
Ec = 3.0, GrC = 0.1, Rn = 0.1, dP/dz = 10, β = 0.5, β1 = 1, Sc = 0.5, Sr = 1.0, γ = 1.5, z = 0.25, ϕ = 0.8

The variation of temperature distribution, θ, vs. the radial co-ordinate, r, for various 
values of the Eckert number, Rn , β1, and dP/dz is illustrated. The effect of Eckert number on the 
temperature, θ, is graphed in fig. 3. As seen from this figure, the temperature distribution is in-
creased with the increasing of Eckert number. The influence of Rn is also studied; we found that 
the temperature distribution is decreased with the increasing of Rn. To keep spaces we exclude 
this figure. This observation gives a good agreement with this obtained by Eldabe et al. [3]. As 
before, the numerical calculations show that the influence of the physical parameters β1 and  
dP/dz, on the temperature distribution θ behave like the Eckert number. 
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Figure 3. The temperature distribution plotted vs. r under the effect of Eckert number for  
M = 1, Da = 0.9, GrT = 0.1, m = 0.5, GrC = 0.1, Rn = 0.1, dP/dz = 10, β = 0.5, β1 = 1, Sc = 0.5,  
Sr = 1.0, γ = 1.5, z = 0.25, ϕ = 0.8



El-Dabe, N. T. M., et al.: Effects of Hall Currents with Heat and Mass Transfer ... 
1076	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 2B pp. 1067-1081

The variation of concentration distribution, Φ, vs. the radial co-ordinate, r, for several 
values of Ec, Rn, β1, Sc, and Sr is graphed. The effect of the Schmidt number on the concen-
tration distribution, Φ, is depicted through figs. 4. As seen from this figure, the concentration 
distribution, Φ, is decreased with the increasing of Schmidt number. Also, the effect of Rn on 
the concentration distribution, Φ, is studied; we observed that the concentration distribution, Φ, 
is increased with the increasing of Rn. To keep spaces we exclude this figure. This observation 
is in a good agreement with this obtained by Hayat et al. [23].
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Figure 4. The concentration distribution plotted vs. r under the effect of Schmidt number for  
M = 1, Da = 0.9, GrT = 0.1, m = 0.5, GrC = 0.1, Rn = 0.1, dP/dz = 10, β = 0.5, β1 = 1, Ec = 3.0,  
Sr = 1.0, γ = 1.5, z = 0.25, ϕ = 0.8

Trapping

As usual in the hydrodynamic theory, for incompressible fluids in 2-D, a stream func-
tion ψ(r, z) is considered, which is defined:

	

1 1  and         u w
r z r r

ψ ψ∂ ∂   = =−   ∂ ∂   

Now, the stream function ψ(r, z) on the following two cases is defined as:
In the case of the absence of the Eckert number:

( ) ( ) ( )

( ) ( ) ( ) }

2
2 1 0

2 2 2
3 4 1 0

1,    2     
2

2  2      

r z a r I L r r L I L h r

a r h r a r I n r r n I nh

ψ   =− − −  

 + − + −

+

 (42)

In the case of the presence of the Eckert number:

( ) ( )

( )

2 2 2 4

1 32

4 2 6 6 2 8

2 4 5

,  M M
2 44 

M M M   
2 6 2 8

r h r rr z
h

h r r h r r

ψ
 

= + + − − 
  

   
− + − − −        

(43)

where I1(..) 
is the modified Bessel function of the first kind and first order. 

The constants a2, a3, and a4 are defined in the appendix but excluded here to save 
space.
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In what follows, numerical calculations with the phenomenon of trapping are made. 
Trapping is an important physical phenomenon in peristaltic motion. It contains a bolus of fluid 
with a closed streamlines. Generally, the shape of streamlines is as same as the boundary wall in 
the wave frame. However, under sufficient conditions, some of the streamlines split and enclose a 
bolus, which moves as a whole with the wave. This phenomenon is defined as trapping [24]. Fig-
ures 5 illustrated the effect of the thermal Grashof number on the streamlines. It is seen from fig. 
5(a) that the size of the trapped bolus is increased with the increasing of Grashof numberT in case 
of the absence of Eckert number. Also, the bolus size is increased with the increasing of Grashof 
numberT in case of the presence of Eckert number which is illustrated from fig. 5(b). These results 
are in agreement with the results those obtained by Noreen [25]. The influence of Darcy number 
on the streamlines is studied; the bolus size is found to increase with the increasing of the Darcy 
number in case of the absence of Eckert number. Meanwhile, in case of the presence of Eckert 
number, the bolus size is found to decrease with the increasing of Darcy number. These results 
are in agreement with the results those obtained by Akbar et al. [26]. To keep spaces we exclude 
this figure. Also, the influence of the amplitude ratio, ϕ, is studied. It is observed that the bolus 
size is decreased with the increasing of, ϕ, in the case of absence of Eckert number. Meanwhile, 
in the case of presence of Eckert number the bolus size is increased with the increasing of ϕ and 
the bolus is disappeared at ϕ = 0 in both cases. To avoid the repetition, we exclude these figures.
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Figure 5. Streamlines for M = 1, Da = 0.9, Ec = 3.0, GrC= 0.1, Rn = 0.1, β = 0.5, β1 = 1, Sc = 0.5,  
Sr = 1.0, γ = 1.5, z = 0.25, ϕ = 0.6 and for different values of GrT; GrT = 0.1, GrT = 1.5, GrT = 1.8; 
(a) at Ec = 0, (b) at Ec ≠ 0

Figure 6 indicates the influence of the thermal Grashof number on the contour plot 
for the radial and axial velocities u(r, z) and w(r, z), respectively, where the radial direction, r, 
is plotted vs. the axial one z. It is observed from fig. 6(a) that the size of the trapped bolus is 
decreasing with the increase of Grashof numberT. Also, the velocity, w, is increased. Also, it 
is observed from fig. 6(b) the variation of velocity, w, is increased with increasing of Grashof 
numberT. Meanwhile, the size of the trapped bolus is decreasing with the increasing of Grashof 
numberT. A comparison for the temperature distribution with the work of Vasudev et al. [16] 
and the present study is illustrated in fig. 7. We found that the curves are very close at low val-
ues of Rn. A comparison of obtained results for the values of Nusselt number without effect of 
the Hall currents, chemical reaction parameter, Darcy, Grashof, and modified Grashof numbers 
with those of Eldabe [15] is illustrated through tab. 1.
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Table 1. Comparison of Nusselt number between 
the present results and data obtained by Eldabe and 
Abou-Zeid [15] for various values of Sc with Rn

Rn Sc M Ec Obtained 
results Data [15]

2.5 2.5 2 5.5 –0.366222 –0.562607
3.5 3.5 2 5.5 –0.3478 –0.225751
3.5 4.5 2 5.5 –0.3316 –0.225751

Conclusions

The purpose of the current study is to investigate the effect of the Hall current on a 
peristaltic transport of a non-Newtonian flow. The Casson model through a vertical cylinder 
is taken into account. The system is affected by a strong horizontal uniform magnetic field. 
In addition, the heat radiation, viscous dissipation, porous media and chemical reaction are 
considered. The non-linear governing PDE are presented in a dimensionless form. The resulted 
system is very complicated to be solved analytically. To relax the mathematical manipulation, 
the present study depends mainly on the long wavelength approximation in addition with the 
law Reynolds number. The exact solution is obtained, in the absence of the Eckert number, in 
terms of the modified Bessel’s functions of the first kind. The HPM, in the presence of the Eck-
ert number, is utilized up to the second order. Again, a numerical technique based on the Run-
ge-Kutta Merson with shooting technique is assumed. A set of diagrams are plotted to illustrate 
the influence of the various physical parameters on the velocity, temperature and concentration 
distributions. Also, to make a comparison between the analytical solutions and numerical ones. 
A graphical and data format is compared with some pervious works. A concluding comment 
may be drawn.

Figure 7. Comparison of temperature 
distribution with Vasudev work [16]
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Figure 6. Contour plot for the radial and axial velocities for M = 1, Da = 0.9, Ec = 3.0, GrC = 0.1,  
Rn = 0.1, β = 0.5, β1= 1, Sc = 0.5, Sr = 1.0, γ = 1.5, z = 0.25, ϕ = 0.6 and for different values of GrT;  
GrT = 0.5, GrT = 1.5, GrT = 1.8
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yy The velocity distribution is increased in accordance with the parameters Rn, β1, and, Ec. Meanwhile, it decreased along the parameters dP/dz, β1, Da, GrT, and m. These results are in 
agreement with the results those obtained by Hayat et al. [7].

yy The temperature distribution is increased in accordance with the parameters Ec and β1. 
Meanwhile, it decreased along the parameters Rn and dP/dz. These results are in agreement 
with the results those obtained by Eldabe et al. [3].

yy The concentration distribution is increased in accordance with the parameter Rn. Meanwhile, 
it decreased along the parameters Ec, Sr, β1, and Sc. These results are in agreement with the 
results those obtained by Hayat et al. [23].

Finally, the trapping phenomenon is taken into account. The numerical calculations 
give the following results.

yy In case of the absence of Eckert number, the influence of Darcy number is the same as the 
influence of Grashof numberT on the bolus size.

yy In case of the presence of Eckert number, the influence of Darcy number on the size of the 
trapped bolus is contrary to the influence of Grashof numberT. These results are in agree-
ment with the results those obtained by Noreen [25] and Akbar et al. [26].

yy Contour plots for radial and axial velocities, respectively are illustrated through figs. 6(a) 
and 6(b).

Nomenclature

a	 – initial radius of the tube
b	 – amplitude of the peristaltic wave
B0	 – magnetic field strength
C	 – concentration of the fluid
C0	 – stagnation concentration
c	 – wave propagation speed
cp	 – specific heat parameter
D	 – coefficient of mass diffusivity
Da	 – Darcy number
Ec	 – Eckert number
e	 – electric charge
GrC	 – modified Grashof number
GrT	 – thermal Grashof number
g	 – gravitational acceleration
h 	 – dimensionless of the geometry of the wall
K	 – thermal conductivity,	[K]
K0	 – permeability of porous medium
K1	 – constant of chemical reaction
KT	 – thermal diffusion ratio
k*	 – mean absorption coefficient
M	 – Hartmann number
m	 – Hall parameter
ne	 – number of electrons
P	 – fluid pressure
Pr	 – Prandtl number
py	 – yield stress
Q0	 – constant of heat generation
R	 – along the radial co-ordinate
Re	 – Reynolds number
Rn	 – radiation parameter
r	 – dimensionless radial co-ordinate
Sc	 – Schmidt number

Sr	 – Soret number
T0	 – stagnation temperature
Tm	 – mean fluid temperature
t	 – time
U	 – radial velocity of the fixed frame 
u	 – dimensionless radial velocity
V	 – velocity vector
W	 – axial velocity of the fixed frame 
w	 – dimensionless axial velocity
Z	 – axial co-ordinate
z	 – dimensionless axial co-ordinate	

Greek symbols

αC	 – coefficient of mass expansion
αT	 – coefficient of thermal expansion
β	 – dimensionless Casson parameter
β1	 – dimensionless heat source parameter
γ	 – chemical reaction parameter
δ	 – wave number
θ	 – heat capacity of the fluid
λ	 – wave length
µ	 – fluid viscosity
µB	 – plastic dynamic viscosity
π	 – deformation rate product 
πC	 – critical value of deformation rate
ρ	 – fluid density
σ	 – electric conductivity
σ*	 – Stefan-Boltzmann constant
τij	 – stress tensor for Casson model
Φ	 – dimensionless concentration
ϕ	 – amplitude ratio
ψ	 – stream function
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