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Fuel burning rate plays a major role in optimizing the performance of internal 
combustion engine with reduced emission. In an attempt to optimize the perfor-
mance of internal combustion engine, a novel empirical correlation is developed 
for fuel burning duration in tune with the methodology proposed by an earlier in-
vestigator for spark-ignition engine. The correlation was integrated with the qua-
si-dimensional mathematical model to analyse the combustion, performance and 
emission characteristics of engine. Engine speed and fuel injection timing were 
varied to assess the performance and corresponding exhaust emission of engine. 
Predictions relating to variation of burning duration with compression ratio at 
different equivalence ratios are in reasonable agreement with the published data 
on burning duration. The simulated results show that the optimum injection timing 
lies in the range of 23 °bTDC to 13 °bTDC for brake power and indicated power 
both, and the lowest brake specific fuel consumption and indicated specific fuel 
consumption were found close to 13 °bTDC. A sharp decrease in peak cylinder 
pressure was also observed with retarding injection timing, whereas both the re-
tarding injection timing and increased engine speed accrue to reduced nitric oxide 
exhaust at exhaust valve open.
Key words: compression ignition burning duration, validation, injection timing, 

speed, maximum pressure, engine performance, NO emission

Introduction

Higher break power, reduced emission and low fuel consumption are the major concern 
for the design of engines operated by different fuels. Modelling and simulations are quite often 
used to minimize the experiments to be conducted on internal combustion (IC) engine to reduce 
time and cost. Among the zero dimensional model, phenomenological model, quasi-dimensional 
model, and multidimensional; multidimensional model takes more time to give solution, where-
as, phenomenological and quasi-dimensional models provide better accuracy in predictive result 
in short time [1]. Computational mathematical modelling or numerical solutions can give more 
effective forecast results on given engine parameters [2]. Compression ignition (CI) engine us-
ing diesel fuel has become more popular for automotive applications due to its higher energy 
density, durability and efficiency. While CI engines used for blended fuel, optimization of op-
erating parameters is required to enhance the conversion efficiency of fuel for producing high-
er indicated power with low pollutants [3]. Also alternative fuel, such as biodiesel can be used 
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in existing CI engine with or without minor modification. The biodiesel is more attractive due 
their desirable attributes (such as sustainable, biodegradable, and carbon neutral) to environment 
conditions. It produces lower emission such as unburned hydrocarbon, carbon monoxide and 
better engine performance [4, 5]. Mikulski and Wierzbicki [6] were proposed zero-dimension-
al and two-phase combustion model for dual-fuel CI engine simulation. Rakopoulos et al. [7] 
have conducted the multi-zone modelling to analyse the development of fuel spray while diesel, 
biodiesel and crude vegetable oil as a fuel for Diesel engine. Sanjay [8] was used the MATLAB  
program to simulate the model to the analysis of a single cylinder 3.5 kW diesel engine using 
palm oil methyl ester, diesel and its blends as a fuel. The computational results on brake thermal 
efficiency (BTE) and IP were closer (2-3%) to experimental results. In addition, they have de-
veloped a single-zone thermodynamic model for Diesel engine and it integrated with triple-Wie-
be function to simulate heat release and cylinder pressure. The prediction of cylinder pressure 
and heat release rate by simulation model were found to be closer (2.2% and 2.5%) to experi-
mental results. Furthermore, in respect to modelling of blended fuel use in direct injection Die-
sel engine, ethanol-diesel blend [7], vegetable oil, biodiesel and diesel [9] fuelled engine study 
have been conducted through 2-D and multi-zone model. The burning duration is the specif-
ic parameter, which can be precisely estimated at starting of computational program to predict 
the engine performance easily. Several authors [11, 12] have used the Wiebe function to predict 
the burning duration and performance analysis of CI engine. Shipinski et al.[13] were used the 
single exponential Wiebe function to express the burning rate of DI and in-DI Diesel engine 
and they found that burning duration depends on equivalence ratio and engine speed. Watson  
et al. [14] were used the combustion correlation for Diesel engine simulation describe by Wiebe 
functions. They reported that the parameters appear in Wiebe functions are depends on engine 
operating parameters (engine speed and load) and geometry of combustion chamber. On the other 
hand, two-Wiebe function can be used to describe the burning duration in Diesel engine [15]. This 
function includes premixed and diffusive combustion period and depend on fuel injection timing 
and crank shaft angle. However, they have not given any information regarding the calculation 
of burning duration. Therefore, this paper represents a novel empirical correlation for CI engine 
burning duration by following methodology developed by Bayraktar and Durgun [16] for spark 
ignition (SI) engine. The prepared empirical relation is function of compression ratio, engine 
speed, equivalence ratio and fuel injection timing. This paper provides inclusive performance 
analysis using burning duration in quasi-dimensional computational modelling. In engine com-
bustion, performance and emission have been predicted with variation of fuel injection timing (43, 
33, 23, 13, 3 °bTDC and 7 °aTDC) and engine speed (1500, 2000, 2500, 3000, and 4000 rpm). 

Development of an empirical correlation for burning duration

Burning duration (θd), is an important measure to optimize performance and emission 
of an engine. It is a function of equivalence ratio (ER), compression ratio (CR), speed (N), 
and injection timing (θinj). The burning duration was taken as the crank angle interval between 
start of burning to end of burning (last part of the charge). Following equation is the modified 
empirical relation and developed for CI engine. It has developed on the basis of the function of 
operating parameters and represented by f1(CR), f2(N), f3(ER) and f4(θinj). Thus the general form 
of burning duration can be expressed as:

  d inj 1 2 3 inj d1( , , , ) ( ) ( ) ( ) ( )CR N ER f CR f N f ER fθ θ θ θ= ⋅ ⋅ ⋅ ⋅   (1)

This equation is used to determine the function. At the reference condition all the 
variables (operating parameters) are divided by their initial values such as CRref, Nref, ERref and 
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θinj.ref.The approximate functions f1(CR), f2(N), f3(ER), and f4(θinj) can be evaluated by applying a 
curve fitting method with the used of numerical value of burning duration (θd) for different val-
ues of CR, N, ER, θinj. The following second degree polynomial equations have been obtained.
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For the known value of reference operating parameters CRref  = 12, Nref = 1000 rpm,  
ERref = 1.0, θinj, ref = −30 °CA, burning duration (θd1) is 45 °CA.

Figure 1 shows comparison of the computed burning duration by using the empirical 
correlation, eq. (1), and experimental value given by Kumar et al. [17] with CR. There is a good 
agreement between computed with experimental trend and value with 0.30% error. Similarly, 
fig. 2 shows the variation of burning duration calculated by using the empirical correlation, 
eq. (1), at different injection timing and compared with experimental results given by Agarwal  
et al. [18]. The figure shows the good agreement between burning duration results obtained 
from empirical equation and experimental value with 1.34% error.
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Figure 1. Burning duration vs. compression ratio Figure 2. Burning duration vs. injection timing

Mathematical and computational modelling

In this paper, we have used the computational analytical approach for the prediction of 
combustion, engine performance, and emissions. The quasi-dimensional thermodynamic sim-
ulation model has been used to simulate closed power cycle of CI engine comprising, injection 
timing, delay period, combustion, and expansion. The models developed by Whitehouse and 
Sareen [19], and Kumar et al. [20], are being applied to simulate the Diesel engine working 
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process and its spray mixing model. This model devides the mixture charge into burnt and 
unburnt zones; the burned zone corresponds to injected fuel and unburned zone corresponds 
to surrounding air. After injection, the ignition-delay period was calculated with respect to 
consuming 0.001 of the total volume of vaporized and mixed with air as spray nuclei [21]. The 
assumed spherical spray (burning) nuclei propagation in the auto flame region inside the cylin-
der are simulated with respect to crank angle and corresponding area of burned and unburned 
[22] till the end of combustion where the volume of fresh charge (Vm) is just negative. Once 
combustion is completed, the variables are organized for a single-zone calculation. Modified 
empirical relations have been used to estimate burning duration as a function of equivalence 
ratio, speed, CR and injection timing. Heat transfer between the burned and unburned zone 
was neglected and the heat transfer from cylinder content to the wall has been predicted with 
semi-empirical correlation developed by [23]. The FORTRAN based computational simulation 
used to calculate with respect to crank angle of unburned and burned temperature, pressure, 
burned and unburned mass, volume and 12 combustion species. The variables were integrated 
and solved with forth order Runge-Kutta method and numerical solution by Newton-Raphson 
technique. In the numerical model following assumption and approximation were considered:
 – integrated area for the heat transfer from burned and unburned spray (burning) nuclei auto 

flame region inside the cylinder is assumed to propagate with Wiebe function,
 – during fuel injection and combustion homogeneous conditions throughout the combustion 

chamber, and ideal gas behaviour,
 – air entrainment due to shearing action of fuel spray,
 – combustion does not produce additional air entrainment,
 – at any time pressure throughout the cylinder is uniform,
 – the negligible volume occupied by auto ignition nuclei in the flame reaction zone,
 – except nitrogen for species, the burned gases are at complete thermodynamic equilibrium,
 – the unburned gas is frozen at its original composition, 
 – both burned and unburned gases have uniform local specific heat, and
 – there is no heat transfer between burned and unburned zone.

Compression modelling

Compression started from IVC and the trapped state includes fresh charge and residual 
charge of the previous cycle [24]. Computational modelling simulates 20 power cycles for the estab-
lishment of species fraction of the exhaust through Newton-Raphson method. During compression 
charges and residual species are assumed in freeze condition. Pressure variation with crank angle 
inside the combustion chamber during compression is govern by the following eq. (6): 

 
d d d 11
d d dv v

p R Q p V R
C C Vθ θ θ
  

= − +  
   

  (6)

where V is the instantaneous volume of the cylinder:

 ( )
2

2 2
21 cos sin

4
L LV D r
r r

θ θ
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  (7) 

At the same time temperature during compression is calculated:

 d 1 d 1 d
d d d
T V pT

V pθ θ θ
 

= + 
 

  (8)
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where Q is the heat transfer from the gas to the wall and (Q) is caculated by using Annand’s 
equation [18]:

 ( ) ( ) ( )4 4cbc q
e m w c m w

a KQ R T T c T T
F D
= − + −   (9) 

where ac, bc, and cc are Annand’s constant values, ac = 0,4, bc = 0,7, cc = 4.3⋅10–9, and  
F is the area of cylinder walls, D – the cylinder bore, Kq – the thermal conductivity, Re – the 
Reynolds number, Tm – the temperature of unburned charge/products, and Tw  – the cylinder 
walls temperature.

Combustion modelling

After injection of fuel the delay period is calculated with empirical relation used by 
[7] In this stage, state of gas inside the cylinder is calculated applying First law of thermody-
namic for whole closed system is:

 d d d
d d d
Q E W
θ θ θ
= +   (10) 

where E is total internal energy of the whole system include unburned and burned gases:

 u u b bE m e m e= +   (11) 

and the total internal energy variation corresponding to crank angle equation:

 d d d dd
d d d d d

u u b b
u u b b

e m e mE m e m e
θ θ θ θ θ
= + + +   (12) 

The dmb /dθ is the burned mass fraction and dmu  / dθ is the unburned mass of a total 
mass (mt = mu+ mb). The rate of burning of fuel and corresponding area of total heat transfer 
dQ / dθ to cylinder wall from two zone (burned and unburned) are governed by Wiebe function:
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where xb is the mass fraction of fuel burnt at given crank angle θ, θs – the start of combustion, 
ɑ – the Weibe efficiency factor (for xmax assumed value is 6.908), n – the Weibe form factor (for 
xmax assumed value is 3), and θd is the burning duration.

Applying thermodynamic equation for unburned and burned (product) gases tempera-
ture and pressure of the inside cylinder are calculated from:
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where subscript u is unburned and b shows burnt zone. The dQ/dθ heat transfer from the gas to 
cylinder coolant wall, which is estimated by Aannad equation [23] Runge-Kutta fourth order 
numerical procedure, was adopted to solve the differential equation, and the variables are incre-
mented in order of any X variable:
 

1
d
dn n
XX X θ
θ+ = + ∆   (19) 

The specific heat of exhaust species was calculated using polynomial coefficients [25]:

 2 3 4
1 2 3 4 5

pC
a a T a T a T a T

R
 

= + + + + 
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  (20) 
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Polynomial coefficients (a1, a2, a3, a4, a5) for fuel of thermodynamic properties were 
taken from [26], and enthalpy calculated from eq. (22): 
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where Af6 is the enthalpy constant at 298.15 K, Af6 + Af8 the enthalpy constant at 0 K.
Internal energy for fuel ūf [Jkg–1mol–1] is given by: 
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Combustion and species formation 

 General combustion equation of the fuel (CmHnOp) is given by:

 2 2 2 2 2C H O (O 3.76N ) CO H O 3.76 Nm n p cc ccY m n Y+ + → + +    (24) 

where m, n, and p are moles of C, H, and O. The Ycc (= m + n / 4 − p / 2) is the chemically correct 
moles of O2 per mole of fuel, calculated by balancing the oxygen molecules both side of equa-
tion 24. Now the stoichiometric equation for combustion:

 2 2 2 2 2C H O ( 3.76N ) CO H O 3.76 N
4 2 4 2m n p
n p n pm O m n m   + + − + → + + + −   

     (25)

Average chemical formula for diesel fuel is C12H23, used for stoichiometric combus-
tion equation. From previous reaction equation we can calculate the stoichiometric air-fuel ratio 
(αs). Assuming 12 species (H2O, H2, OH, H, N2, NO, N, CO2, CO, O2, O, and Ar) present in the 
combustion product in the cylinder and in the exhaust. The equilibrium combustion equation is:

 
{ } ( )

2 2

2 2 2 r

12 23 2 2 H O 2 H 2 OH H

N 2 NO N CO 2 CO O 2 O A r

C H O 3.76N X H O X H X OH X H
4 2

X N X NO X N X CO X CO X O X O X A

n pm + + − + → + + + + 
 
+ + + + + + +

   (26) 
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These species could reach equilibrium condition if sufficient time is allowed for the 
reactions to take place under a certain state. Criterion for chemical equilibrium can be ex-
pressed by Gibbs function as:
 ,(d ) 0T pG =   (27) 

where specific Gibbs function is expressed:

 g g g2 3 4
g g g

g( ) (1 ln )
R 2 3 4

C d eT a T b T T T T k
T

= − − − − − −   (28)

where ag, bg cg, dg, eg, and kg are constants. Considering the seven equilibrium equation of reac-
tion used by [25], and the value of equilibrium constant Kp was obtained by universal equation:

 dd
c d

c a b

a b
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a a c d p
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X X

υ υ
υ υ υ υ

υ υ
υ υ υ υ + − −+ + = ×  (29)
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    

∑ ∑  (30)

where υ is the stoichiometric coefficient, X, – the molar fraction, and p – the total pressure.
To determine the 12 species concentration and relative equilibrium constants follow-

ing 7 chemical equilibrium equations were used:

 (i) 
2

1 H H
2

⇔      (ii) 2
1 O O
2

⇔      (iii) 2
1 N N
2

⇔      (iv) 2 2 22H O 2H O⇔ +  

  (v) 
2 2

1H O OH H
2

⇔ +      (vi) 2 2 2CO H H O CO+ ⇔ +      (vii) 2 2 2
1H O N H NO
2

+ ⇔ +  

The formation of NO and CO during combustion in the cylinder is a non-equilibrium 
process. Present work comprises the rate kinetics of NO using rate of a kinematic model for 
NO formation developed by Lavoie et al. [26]. These are the seven governing equations for NO 
formation: 
 (i) 2N NO N +O+ ⇔      (ii) 2N O NO O+ ⇔ +      (iii) N OH NO H+ ⇔ +  

 (iv) 2 2H N O N OH+ ⇔ +     (v) 2 2 2O N O N O+ ⇔ +      (vi) 2O N O NO NO+ ⇔ +  

 (vii) 2 2N O N OM M+ ⇔ + +

where M is the third body which may be any of the other species in the mixture and remains 
chemically unchanged during the reaction, K1f –  the forward reaction rate of constant, K1b – the 
backward reaction rate of constant, using this relation find the value of K1b:

 1 1 2 1[N] [NO] [N ] [O]f e e b e eK K R= =   (31)

for first equation and similar relation was adopted for R2, R3, R4, R5 , R6, and R7 .The detail is in 
[21]. The total rate equation for NO is:

 [ ] ( )2 61

1 6

2 3 4 5 7

1 d NO 2 1
d 1 1

e

e

RRV
R RV t

R R R R R

α
α

 
 
   = − +   + + + + + 

 (32) 

where αe = [NO] / [NO]e and e represents the equilibrium condition. 
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Validation, results and discussion

The computational program was run with use of new empirical correlation of burning 
duration. The experimental works have been conducted on VCR engine run with diesel. The 
engine details are given in tab. 1. Figure 3 shows the validation of P-θ for experimental and com-
putational results when engine fuelled with pure diesel at compression ratio 16. The different ex-
perimental result of P-θ in experimental works, among then we have taken Pavg at 215 CAD as trap 
pressure (Ptrap). The natures of P-θ for computational results are nearly same as experimental with 

5.67% error. The figs. 4 and 5 shows com-
parison of computed results (BMEP and 
brake power) with experimental value ob-
tained by Atul Dhar et al. [27] and Rajasekar  
et al. [28] for burning duration, and shows 
good agreement between computed with 
experimental trend and value with 0.43% 
and 1.81% error. The slight variation in 
results due to the taking some assumption 
during mathematical formulation for com-
putational program. The following results 
(BP, IP, BSFC, ISFC, BMEP, IMEP, Pmax 
and NO emission) have obtained by previ-
ous validated computational program. 
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Figure 3. Validation of cylinder pressure and CA Figure 4. Burning duration vs. BMEP

Figure 6 shows the effect of injection timing (43, 33, 23, 13, 3 °bTDC and 7 °aTDC) 
on BP and IP at different engine speed (1500, 2000, 2500, 3000, and 4000 rpm). The value of 
BP and IP are increases as the injection timing is advanced or retarded from the rated value  
(23 °bTDC). It has the maximum value at 13 °bTDC and minimum at 7 °aTDC at all speed. 
BP and IP decreased by 0.97% and 0.71% for retarded the injection timing (from 43 °bTDC to  
7 °aTDC). The figure also depicts that the BP and IP increase with engine speed. 

Figure 7 depicts that the BSFC and ISFC are slight increases as the injection timing 
advanced from rated value. On the other hand, its value decreased with retarded condition. 
The minimum BSFC and ISFC are found at 13 °bTDC and maximum at 7 °aTDC for all speed 
ranges. Ganapathy et al. [29] reported that the value of BSFC are increased when the fuel injec-

Table1. Engine specification
Parameters Specification

General details
4-stroke, single cylinder, 

water cooled, compression 
ignition, multi-fuel, VCR

Product code 240PE
Rated power 3.5kW at 1500 rpm
Compression ratio 17.5:1 (range 12:1 to 18:1)
Bore/Stroke/Capacity 87.5 mm /110 mm / 661 cc

Injection timing 23 obTDC (range 0-30 obTDC)

IVO/IVC 4.5 obTDC / 35.5 oaTDC

EVO/EVC 35.5 obTDC / 4.5 oaTDC
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tion timing advanced or retarded from the rated crank angle degree (345) for different load and 
speed when engine run with diesel. As fuel injection timing increased from 340 to 350 CAD 
(crank angle degree) the value of BSFC continuously increased at given load and speed. It was 
also reported that the optimum injection timing is 340 CAD for minimum BSFC when engine 
fuelled with jatropha biodiesel. The figure also depicts that the increase in BSFC with increas-
ing the engine speed. This is due to increase in frictional power at a rapid rate when the engine 
operates at higher speed consequently, power increasing slower rate than fuel consumption and 
hence increase the BSFC [30, 31]. On the other hand, reverse trends observed for ISFC. The 
maximum value of BSFC and ISFC are 0.259 and 0.195 kg/kWh at 4000 rpm with 7 °aTDC 
injection timing. The minimum value of BSFC and ISFC are 0.21345 and 0.18026 kg/kWh at 
1500 and 4000 rpm with 13 °bTDC injection timing. In the literature [30] is also reported that 
the minimum value of BSFC is obtained at advanced fuel injection timing. The value of BSFC 
and ISFC are increased by 1.273% and 0.981% for retarded the injection timing from 43 °bTDC 
to 7 °aTDC. 

Figure 8 shows the effect of injection timing on BMEP and  IMEP and depicts that 
its value decreases as the injection timing advanced from rated value 23 °bTDC. On the other 
hand, opposite trends follow for retarded condition up to 13 °bTDC, then after its value decreas-
es for all speed range. It produces minimum BMEP and IMEP at 7 °aTDC and maximum at 
13 °bTDC. The value of BMEP and IMEP are decreased by 1.18% and 0.92% for retarded the 
injection timing from 43 °bTDC to 7 °aTDC. The figure also depicts that the decrease in BMEP 
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and increase in IMEP while increasing the engine speed. This is primarily due to the increase in 
friction mean effective pressure (FMEP) with speed [25].

Figure 9 shows that the effect of injection timing on peak cylinder pressure (Pmax), and 
depicts that the higher Pmax at advanced (43 °bTDC) injection timing at all speed. Generally, 
cylinder pressure increases with advanced injection timing. With advancing the fuel injection 
timing the ignition delay increases, due to this the preparation of better air/fuel mixture and 
hence good combustion and higher cylinder pressure [33, 34]. However with retardation of 
injection timing shortens the ignition delay period, due to this reduced the cylinder pressure 
during the initial stage of combustion. The maximum value of Pmax is 77.491 bars at 4000 rpm 
with injection timing 43 °bTDC. The Peak cylinder pressure 77.6 and 73.6 bar for diesel and 
pure biodiesel at 27 °bTDC [34]. In spite of these results, there is a significant decrease in peak 
pressures with speed increasing the speed at given injection timing; this is due to increase the 
ignition delay and decrease the combustion duration [29]. The peak cylinder pressure is de-
creased by 5.26% with retarded the injection timing from 43 °bTDC to 7 °aTDC.

The fig. 10 shows the effect of injection timing on NO emission at the different speed. 
It depicts that the NO decreases with retarded the injection timing from 43 °bTDC to 7 °aTDC. 
Ignition delay period increases with advancing the injection timing, due to this more burning of 
the air/fuel mixture in premixed combustion phase and hence higher combustion temperature. 
On the other hand, NO emission decreases for retarded injection timing. Similar variations 
have also been obtained by Gnanasekaran et al. [34] and Sayin et al. [32]. The NO formation 
decreased by 13.67% with retarded the injection timing from 43 °bTDC to7 °aTDC. Anoth-
er variation, the NO emissions decreases with increasing the engine speeds. The minimum 
and maximum values of NO are 429.1 ppm (at 4000 rpm) and 1942.4 ppm (at 1500 rpm) for  
7 °aTDC and 43 °bTDC, respectively.
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  Figure 10. The NO formation vs. injection timing

Conclusions

The empirical correlation has been proposed for evaluation of burning duration in CI 
engine. This developed correlation comprises the effects of engine speed, compression ratio, 
fuel injection timing and equivalence ratio. The correlation was validated and by using of this 
improves the accuracy of computational result and reasonably agrees with experimental results. 
The following conclusions are drawn based on the mathematical modelling and computational 
program with new developed empirical correlations for burning duration. 
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 y The brake power and indicated power are slightly increases with retarded condition (from 
43 °bTDC to 13 °bTDC), after that its value slightly decreased. Both BP and IP are increases 
with increasing engine speed at any injection timing.

 y Both BSFC and ISFC decrease with retarded injection timing from 43 °bTDC to 13 °bTDC 
after that its value increased. But, BSFC increases while ISFC decreases with respect to 
engine speed for all injection timing.

 y The BMEP and IMEP are increased with retarded the injection timing from 43 °bTDC to  
13 °bTDC, after that its value decreased. The decrease of BMEP and increased of IMEP 
with speed for all injection timing. 

 y The peak cylinder pressure decreases with retarding condition (43 °bTDC to 7 °aTDC) 
while its value increases with increasing the engine speed. 

 y The NO emission gradually decreases with with retarding condition (43 °bTDC to 7 °aTDC), 
but it value decreases with increasing the engine speed. 
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