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This paper dedicatedly reports the heat transfer analysis of single and multi-
walls carbon nanotubes for electrically conducting flow of Casson fluid. Both 
types of carbon nanotubes are suspended in methanol that is considered as a 
conventional base fluid. The governing PDE of nanofluids have been modeled by 
employing newly defined fractional approaches (derivatives) namely Atangana-
Baleanu and Caputo-Fabrizio fractional derivatives. The comparison of analyti-
cal solutions for temperature distribution and velocity field has been established 
via both approaches i. e. Atangana-Baleanu and Caputo-Fabrizio fractional op-
erators. The general analytical solutions are expressed in the layout of Mittage-
Leffler function , ( )y T M  and generalized M-function ( )p

q FM
 
satisfying initial 

and boundary conditions. In order to have vivid rheological effects, the general 
analytical solutions in both cases (Atangana-Baleanu and Caputo-Fabrizio frac-
tional derivatives) are depicted for graphical illustrations. The comparison of 
three types of fluids: pure methanol, methanol with single walls carbon nano-
tubes, and methanol with multi-walls carbon nanotubes is portrayed via Atan-
gana-Baleanu and Caputo-Fabrizio fractional derivatives. Finally, the results in-
dicate that, pure methanol moves quicker in comparison with methanol-single-
walls carbon nanotubes via Caputo-Fabrizio and methanol-multi-walls carbon 
nanotubes, while for larger time, these nanotubes move more rapidly in compari-
son with pure methanol and methanol-single-walls carbon nanotubes via Atan-
gana-Baleanu. 
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Introduction 

The analysis of non-Newtonian liquids has attained significant consideration due to 
their immersion in extensive engineering and industrial applications. Such applications im-
merse plastics manufacturing, petroleum production, bioengineering, drawing of stretching 
sheet through quiescent fluid, food processing, polymeric liquids, aerodynamic extrusion of 
–––––––––––––– 
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plastic films, annealing and thinning of copper wires, and several others. There is no denying 
fact that the Navier-Stokes expression does not characterize flows of non-Newtonian liquids. 
A single relation is not adequate to predict the characteristics and features of non-Newtonian 
liquids, even numerous non-Newtonian relations are available in vast literature [1-5]. Among 
the categories of non-Newtonian liquids, a Casson fluid is one of them. A Casson fluid has 
proved to be the best for the description of shear-thinning liquids having zero viscosity at an 
infinite rate of shear and infinite viscosity at zero shear rates [6, 7]. In continuation, the devel-
opment of industrial manufacturing processes totally depends upon greater heat transfer rates. 
The normal techniques for heat transfer are not adequate to supply reasonable heat transfer 
rates for industrial and manufacturing needs. In order to develop the technique for enhancing 
heat transfer, several scientists, mathematicians, engineers, and numerical analysts are work-
ing in this field. Their main purpose is to enhance the performance of various liquids for in-
stance, water, ethylene-glycol, oil, and few others. The abrasion, clogging, additional pressure 
loss, etc. are the aspects which are inadequate to enhance thermal conductivity. The idea of 
nanofluids was proposed by Choi [8], he verified through his experimental work that thermal 
performance of carrier-liquid can be enhanced via merging/submersion of (tiny) small size 
metallic or solid particles. The mechanism of nanofluids via nanoparticles in base fluid was 
investigated by Buongiorno [9]. In this mechanism, nanoparticles include size, inertia, mag-
nus effect, Brownian motion, particle agglomeration, volume fraction, and thermophoresis. 
On the other hand, nanofluids are utilized to enhance heat transfer rate and thermal conductiv-
ity of base fluids [10-18]. For this purpose, different researchers utilize various types of nano-
particles with distinct sizes and shapes. Most the nanoparticles are made up of oxides, metals, 
carbon nanotubes (CNT), carbides etc. while engine oil, kerosene, ethylene glycol and water 
are considered as the base fluids. The CNT are mainly divided into two categories: single 
walls CNT (SWCNT) and multiple walls CNT (MWCNT) as in fig. 1 [67]. 

 
Figure 1. (a) SWCNT, (b) MWCNT 

In brevity, CNT have gotten significant attention due to highest thermal conductivity 
in comparison with other nanostructure materials. The thermal conductivity of SWCNT and 
MWCNT is substantially higher than the thermal conductivity of metal oxide nanoparticles or 
metal nanoparticles. The SWCNT and MWCNT have remarkable thermal, optical, electrical, 
and mechanical properties due to cylindrical carbon molecules origin. Hence, they have been 
declared as best tools for special thermal properties having extra thermal conductivities, this is 
due to the facts enumerated: the diameter of SWCNT and MWCNT which ranges between 1 
to 100 nm while length in micrometer, the SWCNT and MWCNT have two hundred times 
strength, the SWCNT and MWCNT have fifteen times thermal conductivity, the SWCNT and 
MWCNT have hundred times current capacity of copper, the SWCNT and MWCNT have 
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five times elasticity of steel, the SWCNT and MWCNT have high aspect ratio which assist to 
form a network of conductive tubes, and the mechanical and electronic properties of SWCNT 
and MWCNT can be implemented for instance, leading-edge electronic fabrication, field-
emission displays, nanosensors, nanocomposite materials. Even this, the Environmental Pro-
tection Agency has declared the SWCNT and MWCNT as the non-hazardous particles for the 
environment. However, in comparison with various other nanoparticles, several researchers 
are engaged to work on the SWCNT and MWCNT for the enhancement of thermal conductiv-
ity. Liu et al. [19] analyzed the single- and multi-WCNT for enhancing the thermal conductiv-
ity of engine oil and ethylene glycol. They inspected that ethylene glycol fluid without CNT 
have lower thermal conductivities in comparison with ethylene glycol fluid with CNT. Ther-
mal conductivity of ethylene glycol fluid with CNT at volume fraction of 0.01 was increased 
by 12.4%, in contrast to this, thermal conductivity of engine oil with CNT at volume fraction 
of 0.02 was increased by 30%. Marquis and Chibnate [20] examined the improvement in the 
thermal conductivity of SWCNT and MWCNT with nanolubricants and nanofluids, in which 
they considered three distinct types of nanolubricants and nanofluids. Xie et al. [21] inspected 
nanofluids consisting of MWCNT for enhancing the thermal conductivities experimentally. 
They checked that increment in CNT into fluid generates enhancement in thermal conductivi-
ty. Khan et al. [22] analyzed the fluid problem with Navier slip boundary condition on heat 
transfer of CNT over flat plate. They investigated that engine oil and kerosene-based CNT 
have lower thermal conductivities and densities in comparison with water based CNT. Haq 
et al. [23] examined SWCNT and MWCNT for water-based flow. They perceived lower 
Nusselt number and skin friction for MWCNT in comparison with SWCNT. In the similar 
study, Haq et al. [24] investigated kerosene and water-based CNT fluid has lower heat trans-
fer and skin friction in comparison with engine oil-based CNT fluid. Camilli et al. [25] pre-
sented experimental study of viscosity of CNT for water based nanofluids, in which they con-
sidered the impacts of volume fraction and temperature. Kamali and Binesh [26] explored 
numerical study for MWCNT with nanofluids using fixed wall heat flux condition in a 
straight tube. They observed that due to non-Newtonian behavior of CNT nanofluids, heat 
transfer coefficient is dominated by wall region. Of course, the list of studies on SWCNT and 
MWCNT, MHD, fractional derivatives, porous medium and nanoparticles with nanofluids 
[27-34] can be carried on, but we close it with some of the most interesting references pub-
lished recently [35-46]. In the area of fluid mechanics and CFD, the fractional derivatives of 
non-integer orders are well-known. There are several types of fractional derivatives. These 
fractional derivatives have been recommended by prominent mathematicians as Riemann, Li-
ouville, Sonin, Weyl, Letnikov, Erdelyi, Riesz, Kober, and many others. The fractional deriv-
atives of non-integer orders are enthusiastically used in the fluid mechanics, CFD and natural 
sciences to evaluating the systems and processes with spatial and temporal non-locality (the 
non-locality in time is usually called memory). In this continuity, Saqib et al. [47] investigat-
ed free convection flow of Jeffrey fluid by employing Caputo-Fabrizio time-fractional deriva-
tives and recovered the existing solutions in the open literature as well. Nadeem et al. [48] 
presented an interesting comparative analysis via Caputo and Fabrizio and Atangana and Ba-
leanu fractional derivatives based on exponential and generalized Mittag-Leffler function as a 
kernel. They implemented the non-singular and non-local kernel on free convection flow of a 
generalized Casson fluid. Nadeem et al. [49] implemented modern fractional derivatives with 
the non-singular and non-local kernel to enhance the heat transfer rate of solar energy devices 
via nanoparticles. Syed et al. [50] analyzed Molybdenum Disulphide (MoS2) nanoparticles of 
spherical shape and suspended in engine oil based generalized Brinkman-type nanofluid via 
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newly introduced fractional derivatives known as Atangana-Baleanu derivative. Although 
studies of fluid phenomenon can be consistent yet we end here by citing recent attempts [50-
54]. Motivating by previous research study, our aim is to report the heat transfer analysis of 
single- and multi-WCNT for electrically conducting flow of Casson fluid. Both types of CNT 
are suspended in methanol which is considered as a conventional base fluid. The governing 
PDE of nanofluids have been modeled by employing newly defined fractional derivatives 
namely Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional derivatives. The compari-
son of analytical solutions for temperature distribution and velocity field has been established 
via both approaches i. e. AB and CF fractional operators. The general analytical solutions are 
expressed in the layout of Mittage-Leffler function , ( )y T M  and generalized M-function 

( )p
q FM  

satisfying initial and boundary conditions. In order to have vivid rheological effects, 
the general analytical solutions in both cases, AB and CF fractional derivatives, are depicted for 
graphical illustrations. Finally, the comparison of three types of fluids: pure methanol, methanol 
with SWCNT, and methanol with MWCNT is portrayed via AB and CF fractional derivatives. 

Governing equations  

Let us consider an incompressible unsteady flow of Casson nanofluid containing 
CNT occupying a semi-finite space y > 0. The plate is assumed to be electrically conducting 
with a uniform magnetic field B of strength B0, applied in a direction perpendicular to the 
plate. The magnetic Reynolds number is assumed to be small enough to neglect the effect of 
applied magnetic field. The CNT are suspended in methanol taken as base fluid. Initially, at 
time t = 0, both the fluid and the plate are at rest with constant temperature T∞. At time t = 0+, 
the plate is subjected to accelerated motion. At the same time, the plate temperature is raised 
to Tw which is thereafter maintained constant. Following [55], the equations governing the 
flow and heat transfer are given by: 
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where μnf is the dynamic viscosity, β ‒ the Casson fluid parameter, ρnf ‒ the density, σnf ‒ the 
electrical conductivity, g ‒ the gravitational acceleration, (ρβ)nf ‒ the volumetric thermal ex-
pansion coefficient, (ρcp)nf ‒ the heat capacitance, and knf ‒ the thermal conductivity. The sub-
script nf is used for nanofluid, whereas f will be used for base fluid. 

Initial and boundary conditions are: 

( ,0) 0, ( ,0) , 0F y T y T y    

(0, ) , (0, ) , 0p
wF t At T t T t    

 ( , ) 0, ( , ) , 0F t T t T t      (3) 

were A is the arbitrary constant and its dimension depends on the value of p upon t. For con-
stantly accelerated motion dimension of A will be [LT‒2], and for variably accelerated motion, 
dimension of A will be [LT‒3]. 

Using Xue [56] model for dynamic viscosity and thermal conductivity: 
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The ρnf, σnf, (ρβ)nf, and (ρcp)nf are given by: 
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Introducing the following dimensionless variables: 
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into eqs. (1)-(4), one gets: 
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The initial and boundary conditions become: 
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Calculation of problem 

Calculation of temperature and velocity fields  

via AB fractional derivatives  

For developing AB fractional model, the governing eqs. (7) and (8) have been re-
placed by time variable of order α eqs. (7) and (8) are formulated in terms of AB fractional 
operator: 
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is AB fractional differential operator of order α defined [57-60]: 
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Here M(α) is normalization function such that M(0) = M(1) = 1. Employing Laplace transform 
on eqs. (11) and (12) and imposing assumed conditions (101,2,3), taking χ = 1/(1 – α), we ob-
tain: 
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where ( , )F y s  and ( , )T y s  are the Laplace transform of F(y, t) and T(y, t), computing eqs. 
(14) and (15), we arrive:  
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where s1 = χ/a4, s2 = aχ, s3 = a0a4χ ‒ a2 a4 + a1χ, s4 = a2a4αχ. 
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In order to obtain velocity and temperature profiles, we write eqs. (16) and (17) into 
series form, we get equivalent expressions: 
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where s3 = a0χ ‒ a2, s6 = ‒a2s2. Inverting eqs. (18) and (19) via Laplace transform and express-
ing the final solutions in terms of newly defined M-function ( ),p

q FM  and Mittage-Leffler 
function , ( ),y T M  respectively: 
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where the newly defined Generalized M-function ( )p
q FM  [61-65] and Mittage Leffler func-

tion , ( )y T M  are described, respectively: 
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Calculation of temperature and velocity fields  

via CF fractional derivatives  

For developing CF fractional model, the governing eqs. (7) and (8) have been re-
placed by time variable of order β eqs. (7) and (8) are formulated in terms of CF fractional 
operator: 
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 is the CF fractional differential operator of order β defined [66-68]: 
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where M(β) is the normalization function such that M(0) = M(1) = 1. Employing Laplace 
transform on eqs. (24) and (25) and imposing assumed conditions (101,2,3), taking τ = 1/(1 – 
β), we obtain: 
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where ( , )F y s  and ( , )T y s  are the Laplace transform of F(y, t) and T(y, t), computing eqs. 
(27) and (28), we arrive:  
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where s7 = τ/a4, s8 = βτ, s9 = a0a4τ – a2a4 + a1τ, s10 = a2a4βτ. In order to obtain velocity and 
temperature profiles, we write eqs. (29) and (30) into series form, we get equivalent expres-
sions: 
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where s11 = a0τ – a2, s12 = – a2s8. Inverting eqs. (31) and (32) via Laplace transform and ex-
pressing the final solutions in terms of newly defined M-function ( )p

q FM  and Mittage-
Leffler function , ( ),y T M  respectively: 
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Results and discussion 

This portion is fascinated to a comprehensive study of single- and multi-WCNT with 
all pertinent parameters on velocity field and temperature distribution. Heat transfer analysis 
of SWCNT and MWCNT for electrically conducting flow of Casson fluid is carried out. Sin-
gle- and multi-WCNT are suspended in methanol that is considered as a conventional base 
fluid. The governing PDE of nanofluids have been modeled by AB and CF fractional deriva-
tives. The comparison of analytical solutions for temperature distribution and velocity field 
has been established via both approaches i. e. AB and CF fractional operators. The general 
analytical solutions are expressed in the layout of Mittage-Leffler function , ( )y T M  and gen-
eralized M-function ( )p

q FM  
satisfying initial and boundary conditions. In order to have vivid 

rheological effects, the general analytical solutions in both cases (AB and CF fractional deriv-
atives) are depicted for graphical illustrations and the comparison of three types of fluids: 
pure methanol, methanol with SWCNT, and methanol with MWCNT is portrayed via AB and 
CF fractional derivatives. However, the major outcomes and consequences are expected as: 
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the general solutions are investigated by introducing AB and CF fractional derivatives and 
presented in the layout of Mittage-Leffler function , ( )y T M  and generalized M-function 

( )p
q FM  which satisfy imposed conditions. Figures 2(a) and 2(b) elucidate the effects of na-

noparticles volume fraction on velocity field and temperature distribution. It is apparent from 
fig. 2(a) that velocity fields investigated via AB and CF approach are increasing function with 
increasing nanoparticles volume fraction. On the contrary in fig. 2(b), temperature field is de-
creasing by the variation of nanoparticles volume fraction through CF approach. Meanwhile, 
AB approach has increasing behavior, both approaches have opposite trend as well. It is in ac-
cordance with the physical expectation that when the thermal conductivity is raised up then 
temperature of fluid is enlarged. Figure 3 is depicted to elaborate the characteristics of trans-
verse magnetic field which results the flow of velocity field in reciprocating influences. In 
brevity, the velocity field obtained by AB approach generates decelerations in fluid flow. The 
CF approach has reversal behavior in comparison with AB approach. It is also noted that the 
fluid flow is sequestrating and scattering over the whole vicinity of plate reciprocally. Figure 
4 is prepared for comparison of analytical solutions established by AB and CF approaches. 
The comparison of three types of nanofluids namely: pure methanol, methanol with SWCNT, 
and methanol with MWCNT is underlined by both fractional derivatives.  

   

   
Figure 2. (a) Profile of velocity field via CF and AB fractional operators for nanoparticles volume 
fraction, (b) profile of temperature distribution via CF and AB fractional operators for nanoparticles 

volume fraction 
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Figure 3. Profile of velocity field via CF and AB fractional operators for magnetic field 

   
Figure 4. Comparison of velocity field via CF and AB fractional operators for three types of models 

Conclusions 

Applying newly defined fractional approaches (derivatives) namely Atangana-
Baleanu and Caputo-Fabrizio fractional derivatives on the governing PDE of nanofluids, the 
comparison of analytical solutions for temperature distribution and velocity field has been in-
vestigated. The general analytical solutions have been obtained via Laplace transform and ex-
pressed in the layout of Mittage-Leffler function , ( )y T M  and generalized M-function 

( )p
q FM  

satisfying initial and boundary conditions. The major findings are listed below for 
the vivid rheological effects which are summarized as follows. 
 The velocity field is investigated with AB approach has opposite trend of fluid flow than 

the velocity field with CF approach. It is also noted that the velocity field with both ap-
proaches tends to nearer and nearer over the whole domain of plate.  

 The characteristics of transverse magnetic field results the flow of velocity field in recip-
rocating influences. Simply, the velocity field obtained by AB approach generates decel-
erations in fluid flow. On the contrary, CF approach has reversal behavior in comparison 
with AB approach.  
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 The effects of nanoparticles volume fraction are investigated for temperature distribution 
as well as velocity field via AB and CF approaches are increasing and decreasing func-
tion, respectively. 

 The comparison of analytical solutions by AB and CF approaches is also performed for 
three types of nanofluids. Here, pure methanol moves quicker in comparison with metha-
nol-SWCNT and methanol-MWCNT. While methanol-MWCNT moves more rapidly in 
comparison with pure methanol and methanol-SWCNT. This leads to the phenomenon 
that MWCNT have slighter thermal conductivity as well as density than SWCNT.  

Table 1. Thermo-physical properties of Methanol and nanoparticles (CNT) [51, 52] 

Base fluid/nanoparticles ρ [kgm‒3] Cp [Jkg‒1K‒1] k [Wm‒1K‒1] 

Methanol 792 2545 0.2035 

SWCNT 2600 425 6600 

SWCNT 1600 796 3000 
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