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In the recent years much efforts were made to propose simple and well-behaved 
fractional operators to inherit the classical properties from the first order deriva-
tive and overcome the singularity problem of the kernel appearing for the existing 
fractional derivatives. Therefore, we propose in this research an interesting ap-
proach to acquire the interval solution of fractional interval differential equations 
under a new fractional operator, that does not have the above defect with uncertain 
parameters. In fact, this scheme is developed to achieve the interval solution of the 
uncertain steady heat flow based on the fractional interval differential equations. 
An example is experienced to illustrate our approach and validate it.
Key words: non-singular kernel fractional derivative, interval arithmetic, 

interval-valued function, steady heat flow

Introduction

Although the foundation of the fractional differential equations (FDE) was established 
since around three centuries ago [1-3], the last two decades witness a wide range of applica-
tions to the FDE in various disciplinary to model the real-world systems [4-8]. The FDE may 
represent such kind of phenomena more accurate than the traditional modeling. For example, 
the solute diffusion in contaminant flow in a groundwater aquifer as the does not follow Fickian 
law in general [9].

While these studies have been carried out, scientists used different definitions of frac-
tional derivative and integral such as Grunwald-Letnikov, Riesz-Fischer, Liouville-Caputo, 
Riemann-Liouville, and modified Riemann-Liouville. But almost all of these derivatives have 
some kinds of flaws. For instance, the Riemann-Liouville fractional derivative of a constant is 
not zero, the Riemann-Liouville derivative and Liouville-Caputo derivative do not obey the 
Leibnitz rule and chain rule. The Riemann-Liouville derivative and Liouville-Caputo do not 
satisfy the known formula of the derivative of the quotient of two functions [10]. Besides, the 
singularity of the kernel in the integral of the formulas in the different types of fractional de-
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rivatives imposed a considerable complexity in modeling of the real-world systems. Due to the 
aforementioned circumstances, recently Caputo-Fabrizio fractional derivative was proposed in 
the literature to overcome this difficulty which was followed up by Losada and Nieto to propose 
some new operators for this derivative. However, the suggested fractional derivative was a 
type of generalization based on the Liouville-Caputo derivative and its relevant properties [11]. 
In this regards and very recently, Yang et al. [12] revealed a new fractional derivative with-
out singular kernel, which is called Yang-Srivastava-Machado fractional derivative (for short 
YSM-fractional derivative), concerning the Riemann-Liouville derivative to study fractional 
equations arising in the steady heat flow.

On the other hand, the interval arithmetic and interval differential equations (IDE) 
have not been considered enough from the time that were introduced by Markov [13]. In fact, 
he was the pioneer in this field to propose the interval-valued function, interval derivatives and 
etc. However, in the recent years, the scientists found the applicability of this significant tool in 
the mathematical modeling with uncertain parameters. Therefore, a number of researches has 
been done in this regards to analyze the mathematical systems based on the interval parameters 
and study the existence and uniqueness of the interval solutions of the IDE [14-18]. As a matter 
of fact, interval arithmetic is a branch of fuzzy sets that we deal with the intervals from the first 
step of modeling or numerical algorithm that can reduce the complexity and computational 
difficulties compared with fuzzy systems.

Considering the previous circumstances and similar to the integer order differential 
equations, a limited number of researches has been devoted to the fractional interval differen-
tial equations (FIDE), even a few studies have been done for fuzzy fractional calculus [19-21]. 
Because of the vast applications of interval and fuzzy arithmetic arising in current engineering 
problems [22], we were motivated to develop the generalized Riemann-Liouville derivative 
presented in [12] for the interval functions under uncertainty. Beside that, we model the steady 
heat flow problem based on the interval arithmetic. This new and novel approach can open a 
new window to model the engineering problems based on this new fractional derivative under 
interval uncertainty. To the best of authors knowledge, there is not any report in the literature 
to get the interval/fuzzy solution of FIDE or fuzzy fractional DE with this new fractional de-
rivative.

Preliminaries and notation

It is important to highlight the basic assumptions and definitions in this research be-
fore we present the main results. In this regards, we first revisit the necessary discussions of the 
interval arithmetic presented in [17, 23] and fractional calculus theory [1, 2].

Interval arithmetic

Let suppose that   represents the family of all nonempty, compact and convex in-
tervals of the real line . Suppose that G,H∈  . If there exists aninterval J∈  such that  
G = H + J, then we state J the Hukuhara difference (H-difference for short ) of G and H. We 
show the interval J by G H . Consider the fact that G H G ( 1)H.≠ + −  Regarding to the 
previous explanation, the H-difference is unique, but it does not always exist. A generalization 
of the this type of difference is stated in [17] to overwhelm this defect.

Definition 1. The generalized Hukuhara difference of two interval numbers 1 2,u u ∈ 
(gH-difference for sake of simplicity) is defined:
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in which 3 .u ∈ 
The most significant definition of the interval derivative, based on the fuzzy differen-

tiability notion presented in [24, 25], is stated as:
Definition 2. Assume that : ( , )a b →    and ( , ).a bτ ∈  We call that  is strongly 

generalized (Hukuhara) differentiable at τ, if there exists an element ( )τ′ ∈   , such that 
( )τ′ satisfies in one of the following cases:

–– (I) for all h > 0 sufficiently small, ( ) ( )hτ τ∃ +   , ( ) ( )hτ τ∃ −    and 
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–– (II) for all h > 0 sufficiently small, ( ) ( )hτ τ∃ +   , ( ) ( )hτ τ∃ −   and 
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If ( )τ′ ∈    satisfying Definition 2. exists, we say that  is generalized Hukuhara 
(gH)-differentiable at τ. Also, we say that   is [(I)-gH]-differentiable at τ, if τ satisfies in Defi-
nition (2)-(I), then we have ( ) [ ( ), ( )]gH τ τ τ

′′′ =   , similarly, τ is [(II)-gH]-differentiable at τ, 
if   satisfies in Definition (2)-(II), then we have ( ) [ ( ), ( )]gH t τ τ

′ ′′ =   .
Remark 3. The interval definitions and properties were recalled from the fuzzy re-

search reports. It is worth noting here that all the fuzzy definitions which were reviewed here, 
hold for the interval cases as they are the special cases of the fuzzy notion.

Proposition 4. We call that an interval-valued function :[ , ]f a b →  is w-increasing 
(w-decreasing) on [a,b] if the real function ( ) : [ ( )]Ft w t w F t→ =  is increasing (decreasing) on 
[a,b]. If F is w-increasing or w-decreasing on [a,b], then we call that F is w-monotone on [a,b] 
(see, [14]).

Yang-Srivastava-Machado fractional derivative

Definition 5. The YSM-fractional derivative is defined as:

	 YSM ( ) ( )( ) exp ( ) ( )
1 1

d d
d

x

a
a

P x x P
x

α α α τ τ τ
α α+

 = − − − − ∫D
 	 (2)

where a ≤ x and α(0 < v < 1) is a real number, and ( )α is the normalization function that de-
pends on α such that (0) (1) 1= =  .

If we assume for a special order of α in which 0 < α < 1 and 1= , then the eq. (2) is 
rewritten:

	 YSM ( ) 1( ) exp ( ) ( )
1 1

d
x

a
a

P x x Pα α τ τ τ
α α+

 = − − − − ∫D 	 (3)

and
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0

( ) (1 ) ( ) ( ) , 0, 0 1d
x

P x x x x xα α α= − Ψ + Ψ > < <∫ 	 (4)

where YSM ( ) ( ) ( )
a

D P x xα
+ = Ψ  and [ ( )] ( ),x xΨ = Ψ  in which  stands for the Laplace transform 

operator.

Main results

In what discuss after, we aim to propose an uncertain version of the YSM-fractional 
derivative to solve the steady heat flow with interval uncertain parameters. Th outcomes will be 
employed in the next part considering solutions of the developed FIDE under YSM-fractional 
gH-differentiability.

Definition 6. Let suppose that ([ , ], )a b   indicates the space of absolute continu-
ous interval functions on [a, b] and ([ , ], )f a b∈   , we say that f is YSM-differentiable at 
point ( , )x a b∈ of order α for (0,1)α ∈ , if there exists ( ) ( )YSM f xα ∈  such that:

	 YSM ( ) ( )( ) exp ( ) ( )
1 1

d d
d

x

a

f x x f
x
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 	 (5)

in which similar to the crisp case, ( )α is the normalization function that depends on α.
Theorem 7. Let 1 2( ) [ ( ), ( )] ([ , ], )f x f x f x a b= ∈   then we have:
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also if f is w-decreasing then YSM ( ) YSM ( ) YSM ( )
2 1( ) [ ( ), ( )]f x f x f xα α α= for a.e. ( , )x a b∈ . 

Proof. As ([ , ], ),f a b∈   then f1, f2 are differentiable and therefore YSM ( )
1 ( )f xα  

and YSM ( )
2 ( )f xα exist. Hence, we have:
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that the proof of the theorem is completed.
Remark 8. Indeed, it is easy to verify that

	 YSM ( )

1
lim ( ) ( )f x f xα

α→
′= 	

	 YSM ( )

0
lim ( ) ( )f x f xα

α→
= 	

Theorem 9. Let assume that 1 2( ) [ ( ), ( )] ([ , ], )f x f x f x a b= ∈   , then we have:

	 YSM ( ) ( ){ ( )} ( )
(1 )

f x f s
s s

α α
α

=
− +

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Proof. The proof is straightforward.

The YSM-fractional model of steady heat flow under interval uncertainty

Similar to results proposed in [12], we will develop the YSM-fractional FIDE for 
steady heat flow under interval fractional differentiability. Applying this new approach, we 
give solutions to interval initial-value problems for fractional-order IDE of the original 
problem.

Let consider the following fractional interval Fourier law in 1-D station as: 

	 YSM ( ) ( ) ( )f x xα = −  	 (7)

in which  stands for the thermal conductivity of the material and ( )x indicates the heat 
flux density and we assume here that both of them are the interval parameters under uncer-
tainty. 

If we consider ( )x q= where q the uncertain heat flow of the material, then, using 
Laplace transform operator and taking into account the eq. (4), we have:

	 ( ) ( )
(1 )

qf s
s s
α

α
=

− +



	

then

	 [ (1 )]( )
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q sf s
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using inverse Laplace transform, we have:

	 (1 )( )
( ) ( )

q x qf x α αλ
α α
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= − + 

  
	

in which λ is a constant parameter that depends on the initial value of f(x). 
For instance, set q = [q1,q2] = [1,2], then we have: 
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If we assume in the previous statement that λ = −1 and ( ) 1α = =  , then we have: 

	 ( ) [1,2][ (1 )]f x xα α= + − 	 (8)

Figure 1 demonstrates the validity of the proposed interval fractional derivative for 
the problem (7) with the assumed values of the parameters based on the different the fraction-
al-orders over [0,5]. It is obvious from the figure that these solutions may have a diminishing 
length of their support, which is a critical feature to reflect the expected behavior of interval 
solutions of FIDE based on interval YSM-fractional derivative.

Figure 1. Interval solution with different fractional-order, α, for eq. (8) over x∈[0,5]; (a) α = 0.2,  
(b) α = 0.5, (c) α = 0.7, and (d) α = 0.9
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Conclusion

In this research work, we proposed a plan to obtain an explicit interval solution for 
a type of FIDE based on a new fractional derivative suggested in [12] under interval differ-
entiability. In fact, the YSM-fractional derivative was developed for interval uncertainty to 
model the uncertain steady heat flow. This matter helps us to find the solutions of the modeled 
real-world system explicitly under the assumption of the interval YSM-fractional derivative. 
For future plan, we aim to extend this new approach for the other kinds of IDE such as random 
IDE, functional IDE based on the discussed fractional derivative.
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