
Filobello-Nino, U., et al.: The Study of Heat Transfer Phenomena by Using ... 
THERMAL SCIENCE: Year 2020, Vol. 24, No. 2B, pp. 1105-1115 1105

THE  STUDY  OF  HEAT  TRANSFER  PHENOMENA  BY  USING 
MODIFIED  HOMOTOPY  PERTURBATION  METHOD  COUPLED   

BY  LAPLACE  TRANSFORM

by

Uriel FILOBELLO-NINO a, Hector VAZQUEZ-LEAL a*,  
Agustin L. HERRERA-MAY b,c, Roberto C. AMBROSIO-LAZARO c,  

Victor M. JIMENEZ-FERNANDEZ a, Mario A. SANDOVAL-HERNANDEZ d,  
Oscar ALVAREZ-GASCAa, and Beatriz E. PALMA-GRAYEB a

a Facultad de Instrumentación Electronica, Universidad Veracruzana, Xalapa, Mexico 
b Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Rio,  

Veracruz, Mexico 
c Maestria en Ingenieria Aplicada, Facultad de Ingeniería de la Construccion y el Habitat, 

Universidad Veracruzana, Boca del Rio, Veracruz, Mexico 
d National Institute of Astrophysics, Optics and Electronics, Santa Maria Tonatzintla,  

Puebla, Mexico
Original scientific paper 

https://doi.org/10.2298/TSCI180108204F

In this paper, we present modified homotopy perturbation method coupled by La-
place transform to solve non-linear problems. As case study modified homotopy 
perturbation method coupled by Laplace transform is employed in order to obtain 
an approximate solution for the non-linear differential equation that describes the 
steady-state of a heat 1-D flow. The comparison between approximate and exact 
solutions shows the practical potentiality of the method.
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Introduction

The heat transfer laws are of paramount importance in the design and operation of 
equipment in many industrial applications as well as in pure sciences. Therefore, it is important 
to search for accurate analytical approximate solutions for the equations describing these phe-
nomena. However, it is well known that non-linear differential equations that describe them are 
difficult to solve [1-3].

Laplace transform (LT) plays a relevant role in mathematics because its methods allow 
to solve many problems in science and engineering [4]. It is well known that LT is a powerful 
tool useful for solving linear ODE with constant coefficients and initial conditions and to solve 
some cases of differential equations with variable coefficients and PDE [4]. The contribution of 
LT to non-linear ODE has required its combination with other techniques. Thus, [1] reported a 
combination of homotopy perturbation method (HPM) and LT methods (LT-HPM) in order to 
obtain highly accurate approximate solutions for these equations. At this time, it is clafiried that 
the coupling of LT and HPM is known by another name in the literature: A modified homotopy 
perturbation method coupled by Laplace transform (MHPMLT) [5-7]. As a matter of fact, [5] 
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named this modification as He-Laplace method for simplicity. Thus, from here on, we agree to 
call the proposed method MHPMLT. This work proposes MHPMLT method in the search for 
approximate solutions for the non-linear ODE with Dirichlet boundary conditions defined on a 
finite interval [8] which describes the steady-state 1-D heat conduction in a slab with tempera-
ture-dependent thermal conductivity [9]. The case of equations with boundary conditions on 
infinite intervals has been reported for some authors [10, 11] and correspond often to problems 
defined on semi-infinite ranges. However, the methods for solving these problems are different 
from those that will be presented in this study [8]. Non-linear problems frequently arise in 
science and engineering, whereby, it is very important to search on differential equations that 
describe them. In recent years, there have been proposed several methods focused to find ap-
proximate solutions to non-linear differential equations; such as those based on: variational ap-
proaches [12], tanh method [13], exp-function [14], Adomian’s decomposition method (ADM) 
[15], parameter expansion [16], homotopy analysis method (HAM) [2, 3], perturbation method 
[17], and HPM [1, 5-11, 18-23], since the main solution process of this article is HPM, next we 
briefly mention some of the last developments of this method; such as the coupling of HPM and 
Frobenius method [20], multiple scales HPM method [21], parametrized HPM [22], non-linear-
ities distribution HPM used to find the solution of Troesch problem [23], among many others.

Standard HPM

The standard HPM was proposed by He, it was introduced like a powerful tool to 
approach various kinds of non-linear problems. The HPM is considered as a combination of 
the classical perturbation technique and the homotopy (whose origin is in the topology), but 
not restricted to small parameters as occur with traditional perturbation methods. For example, 
HPM method requires neither small parameter nor linearization, but only few iterations to ob-
tain highly accurate solutions [19, 24]. 

To figure out how HPM works, consider a general non-linear differential equation:

( ) ( ) 0,A u f r r Ω− = ∈ (1)

with the following boundary conditions:

, 0,uB u r
n

Ω∂  = ∈ ∂ 
(2)

where A is a general differential operator, B – the a boundary operator, and f(r) – the known 
analytical function. The A can be divided into two operators L and N, where L is linear and N 
non-linear; so that eq. (1) can be re-written:

( ) ( ) ( ) 0L u N u f r+ − = (3)

Generally, a homotopy can be constructed [19, 24]:

0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0, [0,1],H U p p L U L u p L U N U f r p r Ω= − − + + − = ∈ ∈ (4)

or

0 0( , ) ( ) ( ) [ ( ) ( ) ( )] 0, [0,1]H U p L U L u p L u N U f r p= − + + − = ∈ (5)
where p is a homotopy parameter, whose values are within range of 0 and 1, and u0 is the first 
approximation for the solution of eq. (3) that satisfies the boundary conditions.
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Assuming that solution for eq. (4) or eq. (5) can be written as a power series of p:
2

0 1 2 ...U p pν ν ν= + + + (6)

Substituting eq. (6) into eq. (5) and equating identical powers of pterms there can be 
found values for the sequence n 0, n 1, n 2,...

When p → 1 yields to the approximate solution for eq. (1) in the form:

0 1 2 3...U ν ν ν ν= + + + (7)

Basic idea of MHPMLT

The objective of this section is showing how MHPMLT can be employed to find ana-
lytical approximate solutions for ODE as eq. (3).

For this purpose, MHPMLT follows the same steps of standard HPM until eq. (5), 
next we apply LT on both sides of homotopy equation eq. (5):

3( ) 1 0.7709169974 0.2290830032y z z z= − − (8)

using the differential property of LT, we have [4]:

{ }
[ ]{ }

1 2 ( 1)

0 0

(0) (0) ... (0)

( ) ( ) ( ) ( )

n n n nU s U s U U

L u pL u p N U f r

s − − −′ℑ − − − − =

= ℑ − + − + (9)

or

{ }

[ ]{ }

1 2 ( 1)

0 0

1( ) (0) (0) .. (0)

1 ( ) ( ) ( ) ( )

n n n
n

n

U s U s U U
s

L u pL u p N U f r
s

− − −  ′ℑ = + + + + 
 

 + ℑ − + − + 
 

(10)

applying inverse Laplace transform to both sides of eq. (10):

{ }

[ ]{ }

1 2 ( 1)

1

0 0

1 (0) (0) .. (0)

1 ( ) ( ) ( ) ( )

n n n
n

n

s U s U U
s

U
L u pL u p N U f r

s

− − −

−

   ′+ + + +    = ℑ  
  + ℑ − + − +    

(11)

Assuming that solutions of eq. (3) can be expressed as a power series of p:

0

n
n

n
U p v

∞

=

= ∑ (12)

then substituting eq. (12) into eq. (11), we get:

{ }1 2 ( 1)

1

0
0 0

n=0

1 (0) (0) .. (0)

( ) ( )  ( )

n n n
n

n
n

n n
n

s U s U U
s

p
L u pL u p N p f r

ν
ν

− − −

∞
−

∞
=

   ′+ + + +    = ℑ       +ℑ − + − +         

∑
∑ (13)

comparing coefficients of p, with the same power leads to:
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{ }( )

( ){ }( )

{ }

{ }

0 1 1 2 ( 1)
0 0

1 1
1 0 0

2 1
2 0 1

3 1
3 0 1 2

1

1: (0) (0) .. (0)) ( )

1: ( ) ( )

1: ( , )

1: ( , , )

...

1: (

n n n
n

n

n

n

j
j n

p s U s U U L u
s

p N L u f r
s

p N
s

p N
s

p N
s

ν

ν ν

ν ν ν

ν ν ν ν

ν ν

− − − −

−

−

−

−

   ′= ℑ + + + + ℑ  
  

  = ℑ ℑ − − +  
  

  = ℑ ℑ −  
  

  = ℑ ℑ −  
  

 = ℑ ℑ − 
 

{ }0 1 2, , ,..., )

...

jν ν ν 
 
 

(14)

Assuming that the initial approximation has the form: U(0) = u0 = α0, U ′(0) = α1,...,Un–1 

(0) = αn–1; then the approximate solution may be obtained:

0 1 21
lim ...
p

u U ν ν ν
→

= = + + + (15)

Governing equations

The goal of this work is the searching 
for an approximate solution for the non-linear 
problem, which describes the steady-state 1-D 
conduction of heat in a slab with thermal con-
ductivity linearly dependent on the tempera-
ture, see fig. 1.

The transferred energy caused by the 
temperature difference between two adjacent 

parts of a body is called heat conduction [25]. Let u(x, y, z, t) be the temperature of the afore-
mentioned slab at a point (x, y, z) at time t, and K, σ, and µ the thermal conductivity, specific 
heat, and density of the solid, respectively; then it is verified that the temperature obeys the 
following partial differential equation [26]:

u u u uK K K
x x y y z z t

σµ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

(16)

which is known as the heat conduction equation.
In the cases where K is a constant, the aforementioned equation reduces to the follow-

ing known linear partial differential equation:
2 2 2

2 2 2

u u u uK
tx y z

σµ
 ∂ ∂ ∂ ∂

+ + =  ∂∂ ∂ ∂ 
(17)

A substance with a high thermal conductivity is a good heat conductor; on the con-
trary, one with a small thermal conductivity is a poor conductor of heat, or equivalently a good 
thermal insulator. The K-value depends on the temperature, increasing slightly when it increas-
es, but can be considered almost constant throughout a substance if the temperature difference 
between the parts is not too large [25]. 

Figure 1. The 1-D conduction of heat through 
an insulated slab
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In the case of heat flow under steady conditions, the temperature does not depend on 
time, t, such that ∂u/∂t = 0. Thus eq. (16) becomes:

0u u uK K K
x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂   + + =    ∂ ∂ ∂ ∂ ∂ ∂    
(18)

while eq. (17) becomes in the Laplace equation for u:
2 0u∇ = (19)

Solutions to the linear heat conduction equations for constant thermal conductivity 
eqs. (17) and (19) are studied in detailed, for instance in [25, 26]. Nonetheless unlike the afore-
mentioned, in general K is dependent on temperature, and in this case eqs. (16) and (18), are 
non-linear.

This article considers the case of steady conditions for the 1-D conduction of heat in a 
slab of thickness, L, assuming a temperature dependent thermal conductivity K [9]. Supposing 
that the temperatures of the two opposite faces of the slab are uniformly maintained at T1 and T2, 
where T2 < T1. Then, the governing equation is obtained as a 1-D case of eq. (18):

d d 0
d d

uK
x x
  = 
 

(20)

subject to the following boundary conditions:

1 2(0) , ( )u T u L T= = (21)
For the sake of simplicity, we assume that the thermal conductivity varies linearly 

with temperature, thus [9] (see discussion):

( )2 21K K u Tβ= + −   (22)

where K2 is the thermal conductivity at temperature T2 and the constant β is defined.
In order to employ MHPMLT to obtain a handy accurate analytical approximate solu-

tion for the heat problem previously mentioned, we rewrite eq. (20) as follows. After perform-
ing the indicated derivative in eq. (20):

2

2

d d d 0
d dd

u K uK
x xx

+ = (23)

Next, it is suggested the introduction of the following dimensionless quantities [9]:
2 1 2

1 2
1 2 2

, , ( )u T K Kxy z T T
T T L K

ε β
− −

= = = − =
−

(24)

note that the last equality of eq. (24) defines β. 
Employing the chain rule, it is possible to deduce:

2 2

2 2 2

d 1 d d 1 d,
d d d dx L z x L z

= = (25)

On the other hand, the first equation of eq. (24) can be written:

2 1 2( )u T y T T= + − (26)

Thus, substituting eq. (26) into eq. (22), yields:

[ ]2 1K K yε= + (27)
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After substituting eqs. (25)-(27) into eq. (23):
2 2

2 2

d d d
d d

y y y
z z

ε ε  + + = 
 

(28)

where boundary conditions eq. (21) adopt the simpler form:
(0) 1, (1) 0y y= = (29)

Case study

The objective of this section is employ MHPMLT, to find an analytical approximate 
solution for the non-linear problem given by eks. (28) and (29).

We will see that it is possible to find a handy solution by applying MHPMLT method.
Identifying terms:

( ) ( )L y y z′′= (30)

2( ) [ ( ) ( ) ( )]N y y z y z y zε ′′ ′= + (31)

where prime denotes differentiation respect to z.
In accordance with eq. (4), we propose:

2
0(1 )( ) 0p y y p y yy yε ε′′ ′′ ′′ ′′ ′ − − + + + =  (32)

or
2

0 0y y p y yy yε ε′′ ′′ ′′ ′′ ′ = + − − −  (33)
Applying LT we get:

( )2 2
0 0( )s Y s A s y p y yy yε ε ′′ ′′ ′′ ′− − = ℑ + − − −  (34)

where we have defined Y(s) = I[y(z)], A = y′(0) with initial condition y(0) = 1. 
Solving for Y(s) and applying Laplace inverse transform I–1:

( )1 2
0 02 2

1 1( ) Ay z y p y yy y
s s s

ε ε−   ′′ ′′ ′′ ′= ℑ + + ℑ + − − −   
(35)

Next, we assume a series solution for y(z), in the form:

0
( ) ( )n

n
n

y z p zν
∞

=
= ∑ (36)

where

0 ( ) 1z Azν = + (37)

is chosen as the first approximation for the solution of (28) that satisfies the conditions y(0) = 1, 
y′(0) = A.

Substituting eqs. (36) and (37) into eq. (35), we get:

( )( )( )( )
( ){ }

1 2 2
0 0 0 1 2 0 1 22 2

0

21 2
0 1 22

1 1 .. ..

1 ..

n
n

n

Ap y p y p p p p
s s s

p p
s

ν ε ν ν ν ν ν ν

ε ν ν ν

∞
−

=

−

 ′′ ′′ ′′ ′′ ′′= ℑ + + ℑ + − − + + + + + + − 
 

 ′ ′ ′− ℑ ℑ + + + 
 

∑

(38)
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On comparing the coefficients of like powers of p:
0 1

0 2

1: ( ) Ap z
s s

ν −  = ℑ + 
 

(39)

1 1 2
1 0 0 02: ( ) { }p z

s
εν ν ν ν−  −   ′′ ′= ℑ ℑ +  

  
(40)

2 1
2 0 1 1 0 0 12: ( ) { 2 }

...

p z
s
εν ν ν ν ν ν ν−  −   ′′ ′′ ′ ′= ℑ ℑ + +  

   (41)

After solving the LT for n0(z), n1(z), n2(z),... we obtain:
0

0: ( ) 1p z Azν = + (42)
2 2

1
1: ( )

2
A zp z εν −

= (43)

2 2 3 3
2 2

2: ( )
2 2

...

A z A zp zν ε
 

= + 
  (44)

and so on.
By substituting eqs. (42)-(44) into eq. (15) and evaluating the limit p → 1, results in a 

handy second order approximation:

( )
2 2

2 3 3( ) 1 1
2 2
Ay z Az z A zεεε

= + + − + + (45)

In order to calculate the value of A, we require that eq. (45) satisfies the boundary con-
dition y(1) = 0. Considering the case studies ε = 0.5, ε = 1, and ε = 1.5, we obtain, respectively, 
the solutions:

2 3

( ) 1 0.838447674076117
0.0878743127704564 0.0736780131534264

y z z
z z

= − −

− −
(46)

3( ) 1 0.7709169974 0.2290830032y z z z= − − (47)

2 3

( ) 1 0.744115289348098
0.207640336440601 0.463525047092503

y z z
z z

= − +

+ −
(48)

It should be mentioned that the problem eqs. (20)-(21) has the exact solution (see 
discussion):

( ) ( )2
2 2 11 1 2T T H

u
β β β

β
− − + − +

= (49)

where

( ) ( )
2

1 2 1
1 2 1 2 11 1

2 2
T T TH T T T T x

L
β ββ

−  = + − + − −  
(50)
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Discussion

This work employed MHPMLT in the search for a handy accurate analytical approx-
imate solution for the non-linear second order ODE with finite boundary conditions, which 
describes the steady-state 1-D heat conduction in a slab with thermal conductivity, linearly 
dependent on the temperature. As it is well known, the temperature field of a body approach-
es asymptotically to steady-state conditions. Therefore, the knowledge of the stationary solu-
tion is relevant because it determines the final temperature distribution along the slab. The 
case of thermal conductivity linearly dependent on the temperature arises, for instance, in 
the case of a pure metal such as copper. For this metal, at a temperature ranging from 0-5 
K, the thermal conductivity is modelled mainly by electrons and increases linearly with tem-
perature, see eq. (22), [27]. For other temperature ranges, this dependency is no longer linear, 
and should be the subject of future investigations, using for instance MHPMLT, to model the 
temperature distribution in these cases [27]. From eq. (14) is inferred that MHPMLT is ex-
pressed in terms of the initial conditions for a given differential equation, therefore, our pro-
cedure was aimed to express the approximate solutions in terms of A [8], so that y′(0) can 
be determined, just requiring that the approximate solution satisfies the boundary condition  
y(1) = 0. This condition defines an algebraic equation for A,whose solution concludes the pro-
cedure by obtaining an analytical approximate solution for the proposed problem.

Figures 2-4 show the comparison between numerical solutions and approximate solu-
tions (46)-(48) for ε = 0.5, ε = 1, and ε = 1.5, respectively. It can be noticed that curves are in 
good agreement, whereby it is inferred the potentiality of MHPMLT in the search for approx-
imate solutions of non-linear problems with finite boundary conditions [8]. Nevertheless, in 
more precise terms, it is possible to verify the accuracy of our results by calculating the square 
residual error (SRE) of approximate solutions (46)-(48). The SRE is defined: 

  

2[ ( )]d
b

a

R u r r∫
where a and b are the end points, and u(r) is an approximate solution the equation be solved (3), 
in our case (28) [9] and the residual R[u(r)] results of substituting u(r) into differential equation 
be solved. The resulting values were, respectively of 0.0024, 0.0747, and 0.6745 which con-
firms the accuracy of the proposed solutions. The SRE is in general terms a positive number, 
representative of the total error committed, by using the approximate solution u(r) [9].

1
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0
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MHPMLT Numericaly (z)

     

MHPMLT Numerical

1

0.8
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0.2

0

0 0.2 0.4 0.6 0.8 1
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y (z)

Figure 2. Comparison numerical solution of the 
non-linear problem given by eqs. (28) and (29) for 
and MHPMLT approximation eq. (46)  

Figure 3. Comparison numerical solution of the 
non-linear problem given by eqs. (28) and (29) for 
and MHPMLT approximation eq. (47)  
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The parameter ε, turns out to be of para-
mount importance for our study. Thus, ε would 
be small for the case of small difference of tem-
perature of the two opposite faces of the slab, see 
eq. (24) and for the same reason, for two given 
arbitrary points on the slab, this limit corresponds 
to the simpler case in which, thermal conductivity 
is almost constant, see eq. (22). From eq. (28), it 
is deduced that for steady conditions, temperature 
varies linearly with z in this limit.

A more interesting case would occur if the 
temperature gradient along the slab was not nec-
essarily small and corresponded to bigger values 
of ε. From eq, (28), it is clear that the non-lin-
ear term becomes important too. A relevant fact 
from MHPMLT follows from equations like (28), 
which can be written in the form L(z) + εN(z) = 0, where L(z) is linear and N(z) non-linear [28]. 
It is well known that classical methods of approximation as perturbation method (PM) [28] 
provides in general, better results for small perturbation parameters ε ≪ 1. From this point of 
view, ε can be visualized as a parameter of smallness that measures how greater is the con-
tribution of linear term L(z) than the one of N(z). In general, it is easier to find analytical ap-
proximate solutions for small values of ε than for big values of the same. Figures 2-4 and the 
values of square residual error obtained show a noticeable fact, that eqs. (47) and (48) provide 
a good approximation as solutions of eq. (28), despite of the fact that perturbation parameters  
ε = 1 and ε = 1.5 are indeed large. Thus, in principle, the proposed methodology is not restricted 
to small parameters [8] and it is able to explain the phenomenon under study for a wide range 
of values of the aforementioned parameter in a simple way. 

On the other hand, it is very important to emphasize that, it is possible to improve the 
accuracy of our results, see fig. 4, considering higher order approximate solutions.

In [9] optimal homotopy perturbation method (OHPM) was employed in order to 
provide an approximate solution for eq. (28). Although the solution reported is handy and has 
good accuracy, this method is more complicated for applications than MHPMLT. The OHPM 
requires construct a homotopy, which includes the presence of certain functions, provided of 
some parameters which are determined in order to control the convergence of solutions. This 
procedure is usually longer and difficult than MHPMLT which many times requires only of 
calculating elementary LT in a systematic way. 

At difference of other methods (for instance PM) which include the boundary condi-
tions from the beginning of the problem at the lowest order approximation, MHPMLT estimates 
one of the initial conditions unknown at first, requiring that the whole proposed solution satis-
fies one of the boundary conditions (the other boundary condition is satisfied from the begin-
ning of the procedure) thus, it is ensured that the approximate solution fits correctly on both 
boundaries of the interval (the above is provided, by calculating the value of A) [8].

Although this case study admitted the exact solution (49), it is necessary to make the 
following observations. We note that eqs. (49) and (50) provide a solutiono long and somehow 
cumbersome for practical applications. Even though eqs. (46)-(48) are only approximate solu-
tions for the propose problem, they are handy, accurate and for the same reason ideal for practical 
applications. Other theoretical and practical reasons related with the aforementioned, in favor of 

1

0.8
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0.4

0.2

0

0 0.2 0.4 0.6 0.8 1
z
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Figure 4. Comparison numerical solution of 
the non-linear problem given by eqs. (28) and 
(29) for and MHPMLT approximation eq. (48) 
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using the proposed method is that, the second order approximation (45) provided by MHPMLT is 
not only handy but it is expressed in terms of the perturbation parameter, ε. Thus, from previously 
explained, at least for the case of moderated temperature gradients it is possible to employ (45) 
instead of the rather cumbersome and complicated exact solution (49) with small loss of precision, 
(45) is expressed in terms of physical parameter, ε which allows in principle estimate the contri-
butions of the different ε power terms. For example if ε is small so that we keep just the first two 
terms of (45), then the temperature varies very approximately in a linear way with z.

In consequence, this observation is even more important, regarding that the proposed 
method is not restricted to small parameters by which increases the fruitfulness of the proposed 
method because it is possible to employ (45) instead of (49) for a wider interval of ε. Finally, 
maybe the main reason for proposing MHPMLT, is that the majority of non-linear differential 
equations that describe heat problems do not admit an exact solution.

Conclusions

In this work MHPMLT was employed to provide a handy analytical approximate solu-
tion for the second order non-linear differential equation which describes the steady-state 1-D 
heat conduction problem in a slab of thermal conductivity linearly dependent on the tempera-
ture defined with Dirichlet boundary conditions on a finite interval. The MHPMLT method 
expressed the problem of finding an approximate solution for the aforementioned differential 
equation, in terms of solving an algebraic equation for some unknown initial condition [8]. The 
square residual error of the approximate solutions shows that it is a method with high potential 
in the search for solutions of boundary value non-linear problems, even for the case of large 
perturbation parameters.

Finally, we note an important additional advantage from the proposed method; this 
does not require of solving several recurrence differential equations; indeed it requires only of 
calculating elementary LT in a systematic way. Therefore, LTHPM is a tool with high potential 
for practical applications in science and engineering [8].
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