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The diffusion of oxygen into human body with simultaneous absorption is an im-
portant problem and it is of great importance in medical applications. This prob-
lem can be formulated in two stages. At the first stage, the absorption of oxygen 
at the surface of the medium is constant and an another stage considering the 
moving boundary problem of oxygen absorbed by the human body. In this paper we 
obtain analytical solutions for the oxygen diffusion equation considering the Liou-
ville-Caputo, Atangana-Baleanu-Caputo, fractional conformable derivative in the 
Liouville-Caputo sense, and Atangana-Koca-Caputo fractionalorder derivatives. 
Numerical simulations were obtained for different values of the fractional order.
Ke ywords: fractional calculus, oxygen diffusion equation, Mittag-Leffler kernel, 

fractional conformable derivative

Introduction

Fractional order differential equations as generalizations of classical integerorder 
differential equations. Recent studies in science and engineering demonstrated that the dynam-
ics of many systems may be described more accurately by means of differential equations of 
non-integer order. A dynamical process that modelled through fractional order derivatives car-
ries information about its present as well as past states [1-11]. Oxygen diffusion in a sike cell 
with simultaneous absorption is an important problem and has a wide range of medical appli-
cations. The 1-D problem of oxygen diffusion in a medium which simultaneously absorbs the 
oxygen was originally proposed in [12]. In this paper, the problem is formulated through two 
different stages. At the first stage, the concentration of oxygen at surface of the medium is main-
tained constant, whereas at the second stage the medium absorb the available oxygen and the 
boundary starts to recede towards the sealed surface. Gulkac in [13] considered the homotopy 
perturbation method for solving the oxygen diffusion problem. Liapis et al. in [14] proposed 
an orthogonal collocation method for solving the PDE of the diffusion of oxygen in absorbing 
tissue. In [15], the authors applied the Caputo-Fabrizio fractional derivative to the oxygen diffu-
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sion equation, the authors obtained the solution using an iterative method. Another interesting 
applications have been investigated in [16-18]. 

In this paper we consider the fractional operators of type Liouville-Caputo, Atanga-
na-Baleanu-Caputo, fractional conformable derivative in the LiouvilleCaputo sense and Atan-
gana-Koca-Caputo for obtain analytical solutions for the oxygen diffusion equation [19-23]. 

The following fractional oxygen diffusion equation [15] is considered:
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0 2( )( , ) ( , ) 1, 0 1t u x t u x t
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α α∂
= − < ≤
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 	 (1)

with initial and boundary conditions:

	
2(1 )( ,0) , 0 1

2
xu x x−

= ≤ ≤ 	 (2)

	 (0, ) 0, 0xu t t= ≥ 	 (3)

	 ( , ) 0, ( ), 0, with (0) 1xu x t x s t t s= = ≥ = 	 (4)

In this equation, the fractional operator 0( )( , )t u x tα  can be of type Liouville-Caputo 
0( )( , )C

t u x tα , fractional conformable of type Liouville-Caputo ( )( , )C
a t u x tβ α , Atangana-Balea-

nu-Caputo 0( )( , )ABC
t u x tα , and Atangana-Koca-Caputo 0( )( , )AKC

t u x tα .

Basic tools

The Liouville-Caputo (C) fractional operator with order α is defined as [19]:
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where 0
C

t
α  is the Liouville-Caputo fractional operator of order α with respect to t. 

The fractional operator of type Atangana-Baleanu in Liouville-Caputo sense (ABC) 
of order α is defined [20]:
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where n∈  and g(α) is a normalization function that depend of α, which satisfies that, g(0) = 
= g(1) = 1. 

Let 0 < α ≤ 1 and n∈, the Laplace transforms of the Liouville-Caputo and Atanga-
na-Baleanu fractional operators are given:
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Let Re(β) ≥ 0, n = [Re(β)] + 1, , ( )[ , ]n
af C a bα∈ , , )(( [ , )]n

bf C a bα∈ . Then the left and 
right fractional conformable derivatives in the Liouville-Caputo sense are given by [21]:
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Recently Atangana and Koca proposed a new fractional operator called, the Atanga-
na-Koca fractional derivative in Liouville-Caputo sense (AKC) [22, 23]:
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where g(α) is a normalization function as in the previous cases. 
Let 0 < α ≤ 1, the Laplace transform of the Atangana-Koca fractional-order derivative 

is given:
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Given a function 1( ) ( )u x L∈  , the Fourier transform is given:
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and the inverse Fourier transform of u(x) is given:
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Fractional oxygen diffusion equations

In this paper, we consider the oxygen diffusion eq. (1) involving fractional operators 
of type Liouville-Caputo, fractional conformable derivative in Liouville-Caputo sense, Atanga-
na-Baleanu-Caputo and Atangana-Koca-Caputo.

Liouville-Caputo sense. We have the following oxygen diffusion equation:

	
2

0 2( )( , ) ( , ) 1, 0 1C
t u x t u x t

x
α α∂

= − < ≤
∂

 	 (15)

with initial and boundary conditions:

	
2(1 )( ,0) , 0 1

2
xu x x−

= ≤ ≤ 	 (16)

	 (0, ) 0, 0xu t t= ≥ 	 (17)

	 ( , ) 0, ( ), 0 with (0) 1xu x t x s t t s= = ≥ = 	 (18)

Solution. Applying the Laplace transform to eq. (15) and taking the conditions 
(16)-(18) we get:
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Applying the Fourier transform we have:
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Now, applying the inverse Laplace and inverse Fourier transform to eq. (20) we have:

	

[ ] ( )

( )

2

2
, 1

1( , ) ( ) 2 ( ) ( ) e
2

1 2 ( ) e
2

d

d

ikx

ikx

u x t k i k k E k t k

k t E k t k

α
α

α α
α α

δ δ δ

δ

∞
−

−∞
∞

−
+

−∞

′ ′′= π + − − −
π

− π −
π

∫

∫ 	 (21)
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Atangana-Baleanu-Caputo sense. We have the following oxygen diffusion equation:
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Solution. Applying the Laplace transform to eq. (23) and taking the conditions 

(24)-(26) we get:
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Applying the Fourier transform to eq. (27) and simplifying, we have the following 
relation forb ˆ( , )u k s :
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Applying the inverse Laplace and Fourier transform to the eq. (28) we get:
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Fractional conformable derivative in the Liouville-Caputo sense. We have the follow-
ing oxygen diffusion equation:
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Solution. Applying the Laplace transform to eq. (30) and taking the conditions 
(31)-(33) we get:
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Applying the Fourier transform to eq. (34) and simplifying, we have:
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Now applying the inverse Laplace and inverse Fourier transform to eq. (35) we have:
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In the case when α = 1 the expression (36) matches the solution obtained in the eq. 
(21) in the Liouville-Caputo sense.

Fractional Atangana-Koca derivative in the Liouville-Caputo sense. We have the fol-
lowing oxygen diffusion equation:
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Solution. Applying the Laplace transform to eq. (37) and taking the conditions (38)-
(40) we get:
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where b = g(α)(1−g(α))α.
Applying the Fourier transform to eq. (41) and simplifying, we have:
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Now applying the inverse Laplace and inverse Fourier transform to eq. (42) we have:
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The figs. 1(a)-1(d) shows numerical simulations of the eqs. (21), (29), (36), and (43) 
for α = 0.9 and α = 0.9 – β = 0.94 for the fractional conformable derivative in the Liouville-Ca-
puto sense. The figs. 2(a)-2(d) shows numerical simulations of the eqs. (21), (29), (36), and (43) 
for α = 0.8 and α = 0.8 – β = 0.83 for the fractional conformable derivative in the Liouville-Ca-
puto sense.

Conclusion

Fractional-order derivatives of type Liouville-Caputo, Atangana-Baleanu-Caputo, 
fractional conformable derivative in the Liouville-Caputo sense and Atangana-Koca-Caputo 
were used in this work to model the oxygen diffusion equation. Analytical solutions were ob-
tained by using the Laplace and Fourier transforms. The Liouville-Caputo fractional-order de-
rivative is based in the powerlaw, the Atangana-Baleanu-Caputo and the Atangana-Koca-Capu-
to fractional-order derivatives are based in the Mittag-Leffler Kernel. The Mittag-Leffler kernel 
is a combination of both exponential and power-law memory and can be used as waiting time 
distribution as well as first passage time distributions for renewal process. This kernel appears 
naturally in several physical problems as generalized exponential decay and as power-law as-
ymptotic for a very large time. The fractional conformable derivative in the Liouville-Caputo 
sense have properties similar to the Newton’s derivative and the standard fractional integrals 
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(a) (b)

(c) (d)

Concentration Concentration

Concentration Concentration

Figure 1. Numerical solutions of eqs. (21), (29), (36), and (43); (a) eq. (21), (b) eq. (29), (c) eq. 
(36), and (d) eq. (43), we consider α = 0.9 for the cases (a), (b), (d) and for (c), we consider  
α = 0.9 – β = 0.94 for the fractional conformable derivative in the Liouville-Caputo sense

Concentration Concentration

Concentration

(a) (b)

(c) (d)

Concentration

Figure 2. Numerical solutions of eqs. (21), (29), (36), and (43); (a) eq. (21), (b) eq. (29), (c) eq. 
(36), and (d) eq. (43), we consider α = 0.9 for the cases (a), (b), (d), and for (c), we consider  
α = 0.9 – β = 0.94 for the fractional conformable derivative in the Liouville-Caputo sense
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and derivatives. Due to this operator depend on two fractional parameters α and β, we obtain 
a better detection of the memory. The solutions obtained with these fractional derivatives has 
not been achieved before in the literature. Finally, we observe novel behaviors that cannot be 
obtained with standard models.

Nomenclature
u(x, t)	 –	 concentration of oxygen
x	 –	space, [m]

t	 –	time, [s]
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