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In this work, condensate film on a vertical wall cooled on the external side by forced flow 
is analysed as a conjugate heat transfer problem. The treated case is that the condensate 
film and forced flow boundary-layer are in a parallel-flow arrangement. The mass, 
momentum and energy boundary-layer equations of the condensate film and forced flow 
are set in a dimensionless form to generalize the model. The parameters affecting the 
thermal communication between the condensate film and the forced flow are defined from 
the analysis. These parameters explain the relative impact of the three involved thermal 
resistances of solid wall, forced convection and film condensation on the local and mean 
Nusselt number. The study shows that the Nusselt number predicted by the present 
conjugate model is different from that predicted by a Nusselt-type model.  
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Introduction
Many film condensation studies have been done since the original work of Nusselt [1]. 

The objective was to modify Nusselt model by including the effects of some neglected factors, for 
example vapour superheat [2], vapor shear [3], film convection [4], flow regimes [5], and surface 
shape [6, 7] among other factors. In these modified Nusselt-model studies, either a constant 
temperature or heat flux was assumed at the wall side facing the condensate film without 
considering the effect of the fluid cooling the back wall side. In fact, this cooling fluid can cause a 
considerable variation in the wall temperature or/and heat flux. Consequently, the assumption of 
a constant wall temperature or heat flux commonly applied in a Nusselt-type model is considered 
inappropriate. Therefore, some recent studies have treated the film condensation as a conjugate 
heat transfer problem to inspect the impact of the back-cooling fluid. In addition, the assumption 
of a constant wall temperature or heat flux is not made in the conjugate analysis, but these wall 
thermal conditions are discovered from the solution.

Some recent authors studied the conjugate problem of film condensation and free 
convection. Poulikakos [8] did the first study for a solid vertical wall of zero thermal resistance by 
adopting the Nusselt theory for analyzing the condensate film, and using the Osceen technique for 
solving the free convection mode. Later, Char and Lin [9] employed the Spline method to treat the 
same problem for a vertical wall embedded in a porous fluid medium. Later on, Mosaad [10] and 
Rashed and Mosaad [11] employed the integral method to analyze the film condensation and the 
analytical Osceen tool to solve the natural convection boundary layer for a vertical wall of 
negligible [10] or considerable thermal resistance [11]. They found that the conjugate results are 
different from that of a classical Nusselt-type model.
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Regarding the topic of coupled film condensation and forced convection, Patankar and 
Sparrow [12] did the first numerical study by using a similarity technique to treat film condensa-
tion outside a vertical tube cooled by internal forced flow. They simplified their model by 
considering only the thermal interaction between the condensate film and wall conduction and 
neglecting the effect of the internal flow. Later, Faghri and Sparrow [13] treated numerically the 
same problem of Patankar and Sparrow [12], however for a tube of negligible wall resistance. 
Consequently, they modeled only the thermal coupling between the condensate film and the 
internal fluid flow. Kose [14] treated analytically and numerically film condensation inside a 
vertical tube cooled by external forced flow, and proved numerically that the ratio of axial to 
radial heat flux is less than 0.05%. Based on this outcome, the axial wall conduction was 
neglected in his analytical solution. Chen and Chang [15] applied the non-similarity method to 
solve numerically conjugated film condensation and forced convection in counter-flow on the 
opposite sides of a vertical wall. They neglected the axial wall conduction and proved that the 
wall resistance has a remarkable effect on the solution. Bautista et al. [16] employed a perturba-
tion method to study film condensation outside a vertical two-plate channel cooled internally by a 
forced flow. They concluded that non-conjugate Nusselt-type models are not suitable to be used 
for predicting exactly the necessary heat transfer surface area of a vapour condenser. Later, Luna 
and Mendez [17], who solved the same problem for a porous-medium channel, stated like results.

The previous review indicates that only limited-number studies were conducted on the 
thermal coupling between film condensation and forced flow. Therefore, more studies are still 
needed to achieve better understanding of this conjugate heat transfer process, as well as to 
explain the effect of the solid wall resistance in some details. Therefore, in the present work, the 
problem of coupled condensate film and forced convection in a parallel-flow arrangement on 
vertical wall sides is treated analytically. The main benefit of like an analytical treatment is that 
the effect of the dimensionless factors controlling the thermal communication process becomes 
more understandable than in a numerical model. As a brief description of the present model 
described next, the forced convection boundary-layer is analyzed by an integral technique, while 
the treatment of the condensate film is based on the boundary-layer theory and Nusselt simplifica-
tions. The two analysis results are matched at the wall sides by applying the interfacial thermal 
conditions to give the final solution. The analysis is done in a dimensionless framework to 
generalize the model. 

Analysis
A sketch of the model is plotted in fig. 1. The plot shows that a pure stagnant vapour of 

saturation temperature, T , condenses on the side of a solid  vertical wall (length, H, and s

thickness, w) by the impact of cold fluid flowing with free-stream velocity, u , on the opposite c∞

wall side. The cooling fluid is at a free-stream temperature, T , much less than the vapour c∞  

saturation temperatureT . The wall ends are thermally insulated. The investigated case is that the  s

generated condensate film and convection boundary-layer are in a parallel-flow arrangement.
 Because of the mathematical complexity encountered in solving analytically such a 

conjugate heat transfer problem, few simplifications are made to simplify the analysis. It is 
considered that the flow in both condensate film and convection boundary-layer is steady, laminar 
and of a negligible viscous dissipation. It is also assumed that the pressure gradient outside the 
two layers is zero, and the two fluids are of constant thermal properties and Prandtl number Pr ≥ 1.  
For simplicity in the mathematical modelling, the same temperature symbol T is taken for both 
fluid and solid. In addition, the subscripts “c”, “f” and “w” are introduced to designate the cooling 
fluid, the condensate film and the solid wall, respectively.
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Condensate film 
For the aforementioned simplifications, the 

equations of the mass, momentum, and energy conser-
vation in the condensate film can be expressed, 
respectively:

The dimensionless variable previously presented 
are defined:

where the dimensional parameters  and Ra  sign, respectively, to temperature, Jacob f and θ, Ja, D  , lf f

number, film thickness, film thickness scale, and film Rayleigh number.  
The appropriate boundary conditions are:

The dimensionless wall-film interface temperature, θ  , is assumed an arbitrary wf

function of x-coordinate, which has to be defined from the solution. 
-3 -1For most practical fluids of Pr   ≥ 1 and 10 < Ja ≤ 10 , the inertia and convection terms f

in the aforemomentum and energy equations can be neglected [10]. Hence, solving the two 
reduced equations for boundary conditions (5) gives the velocity and temperatures profiles by:

The heat balance at the condensate-vapour interface is expressed by

Substituting U ,  from eqs. (6) and (7) and V  from integrating eq. (1) into eq. (8), f fθ
this gives:

The previous relation is the main result of the condensate film analysis.

Forced convection   
For steady, incompressible, laminar forced  flow of constant properties on a vertical 

solid surface, the boundary layer equations of mass, momentum and energy conservation read, 
respectively:    
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Figure 1. Model illustration
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Integrating momentum eq. (10b) across the hydrodynamic boundary-layer for zero 
outside pressure gradient condition gives:

So, integrating eq. (10c) across the thermal boundary-layer yields:

The relevant boundary conditions are: 

The dimensionless variables introduced are defined as: 

The symbols  and Pr  refers, respectively, to Reynolds number and Prandtl number, cRe
while  and  sign, respectively, to the velocity and thermal boundary-layer thickness, and U  c ct cΔ Δ
and denote to the velocity and temperature, respectively. The symbol  is the temperature of the wcθ
convection wall side, which is an unknown x-function found from the solution. According 
boundary conditions (12), the crosswise velocity and temperature profiles can be defined by:

Solving eqs. (11a) & (11b) for the two previous profiles gives and:

where  is the thickness ratio of thermal to velocity boundary-layer, which can be approximated ϕ
-1/3by  = 0.976 Pr , for 1 ≤  Pr ≤ 50 [10].c c  ϕ

. Relation (16) is considered the main result of the condensate film analysis.
Now, the next task is to combine the two main results (9) and (16). This task can be 

accomplished by applying the thermal interfacial conditions on both wall sides. Assuming the 
thickness-to-height ratio of the solid separating wall is much less than 1, wall conduction can be 
considered mainly in the crosswise direction. Accordingly, the transverse wall temperature 
profile can be expressed by: 
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The continuity conditions of the heat flux and temperature at both wall sides can be 
expressed by:

 ⁄  ⁄where θ  (X,0) and θ  (X,0) are, respectively, the temperature gradients of condensate film and f c

convection layer at the wall. The 2-D parameters  and  in eq. (18) are defined by:wλ ε

The variables  denotes to the ratio of solid wall resistance to forced convection wε
resistance layer. The variables  denotes to the ratio of condensate film resistance to forced λ
convection resistance.

Calculating the temperature derivative terms in eq. (18) from eqs. (7) and (15), this 
gives:

Relation (20) for  = 0 gives  = 1, while expression (21) for = 0 gives = 0. This f wf tcD θ D θwc

indicates that the two relations satisfy the initial conditions of = 1 and  = 0 at X = 0 cf., eqs. (5)  θ θwf wc

and (12).
Inserting  and  from eqs. (20) and (21) into eqs. (9) and (17), this gives after θ θwf wc

separating the variables: 

The local Nusselt number can be calculated from the local heat flux at the solid-film 
interface divided by the total temperature drop ). This gives: c (T  − Ts ¥

Subsequently, the mean conjugate Nusselt number is calculated by:

Alternatively, the local and mean conjugate Nusselt numbers can be expressed in terms 
of the local heat flux at the solid-convection interface divided by total temperature 
drop ). This gives: (T  − Ts c¥
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Solution
Analytical solution

In this context, special analytical results are found from the general analysis previously 
derived. For the simplified problem case of negligible wall resistance of  → 0, the separating wε
wall becomes as an interfacial surface between the two fluid media, whose dimensionless 
temperature θ  is function only of X-co-ordinate. For this case of →  eqs. (20) and (21) w  ε  0,w

indicate that → →  as → . This means that on these limits of →  and → , the , θ   0 and θ  0  λ  ¥ ε  0  λ  ¥wf wc w 

wall temperature assumes the free-stream temperature of the convection side of zero 
dimensionless value. This indicates disappearing the forced convection boundary-layer. Conse-
quently, the treated two-fluid problem reduces to the traditional one-fluid problem of film 
condensation on isothermal surfaces. This outcome is expected subject to the physical meaning 
of -variables defined by eq. (19). Now, solving eqs. (24a) and (25b) with eq. (9) for θ  →wfλ  0 and
ε →w  0 gives:

The two results are the same exact Nusselt ones of laminar film. On the other limit of
λ ε  θ   1 and θ   1wf wc→ 0, eqs. (20) and (21) for → 0 show that → → This means that the w . wall will   
take the saturation temperature of the condensation side of the 1-D value. This means  vapour 
collapsing the film condensation, and consequently, reducing the conjugate problem to the simple 
one-fluid problem of forced flow on an isothermal vertical surface. Now, solving eqs. (25a) and  
(25b) with eq. (16) for   and → 0 yields:θ  = 1 εwc w

The two results are the known exact ones of forced convection.  Here, it is to state that 
exact solutions (27) to (30) confirm the proposed model validity.

Numerical solution
The theoretical model described by the non-linear eqs. (20)-(23) has to be solved 

simultaneously to find the X-distribution of the unknown parameters  , , θ  and θ for certain f wf wc   D Δtc

values of conjugation parameters  and . At first, eqs. (22) and (23) are solved together to wλ  ε
determine the X-distribution of  and Δ  for certain values of λ and ε . Then, the corresponding f wΔtc

distributions of θ and θ can be calculated from eqs. (20) and (21), respectively. The numerical wf  wc 

procedure starts at X = 0 for  = 0 and , and then moves with small X to arrive the point of fΔ  Δ  = 0 Δtc

X = 1. In the initial solution trails, exact results (27) to (30) were used as a benchmark to define the   

proper size of X, which gives correct and stable results. It was found that the solution withΔ
ΔX = 0.004 yields accurate and reliable results. The fourth-order Runge-Kutta tool was employed 
to perform this numerical task.

Figures 2-4 display numerical results found for zero wall resistance case of = 0. In this w ε
situation, the wall acts as a solid-fluid interface separating the two-fluid media. Figure 2 shows  
the variation in the local wall temperature   at  X = 0.5 with -variable. It rises with decreasing  λ wθ λ
to take finally the value 1 of the saturation temperature of the vapour side as λ → 0. While it 
decreases with increasing λ to assume finally the value zero of the free-stream temperature of the   
convection side as  → ∞.The local conjugate Nusselt number, at the same point of X = 0.5 is λ
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plotted vs. -variable in fig. 3. The Nu enhances with increasing λ and vice versa. It approaches x λ
the Nusselt result (27) of film condensation on isothermal vertical surfaces when  → ∞, while l
approaches the exact result (29) of forced convection on isothermal plan surfaces as λ → 0. This 
means that the thermal effectiveness of film condensation dominates with increasing λ, while that 
of the forced convection dominates with decreasing . This behavior is consistent with the λ
physical meaning of -parameter given by eq. (19). The effect of λ-parameter on the condensa-λ

/ /tion-side temperature gradient at the wall θ  and that of the convection side θ  is displayed in fig. wf wc
/ /4, for ε = 0. The θ   increases while θ decreases with increasing.w wf wc   

Some results displaying the effect of wall resistance factor  in more details are wε
presented in figs. 5 and 6. The dependence of the two fluid temperature gradients at the wall sides 

 /  /θ  , θ  on the wall resistance parameter ε  is plotted in fig. 5, for λ = 1. The plot shows that bothwf wc w
 /  /θ  , θ reduce while the temperature drop across the solid wall (θ  − θ ) increases with increas-wf wc wf wc

ing ε . The effect of ε  on the wall temperature drop (θ − θ ) is more evident displayed in fig. 6. It w w wf wc

is noted that the temperature drop (θ − θ ) rises with increasing ε while decreases with increas-wf wc w, 

ing X. These results plotted in figs. 5 and 6 indicate that the solid wall acts as a thermal obstacle 
between the film condensation and forced convection, which relaxes their thermal interaction. 
The variation in the mean conjugate Nusselt number, with λ and  parameters is plotted in fig. 7. wε
The top curve of ε = 0 is limited by the two lines of the exact solutions of eqs. (28) and (30) of film w

condensation and forced convection, respectively, on isothermal vertical plane surfaces. The plot 
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Figure 2. Variation of wall temperature θ atw 

X = 0.5 with λ; for ε = 0w

Figure 3. Variation of local conjugate Nusselt
number with λ; for X = 0.5 and ε  = 0w

Figure 5.  Dependence of fluid temperature
/ /gradients at wall sides θ  and θ  on εwf wc w

Figure 4. Effect of on fluid temperature gradients
/ /at wall sides θ   and θ ; for ε = 0wf wc w



shows that mean Nusselt number improves with rising -parameter, while reduces with increasi- λ
ng -parameter. Around 3000 numerical data points of mean conjugate Nusselt number could be wε
correlated within ±2%, cf., fig. 8 by:

Model validation  
 It is indicated in section Analytical solution 

that for zero wall resistance case of ε = 0, the w 

model yields analytically the same known exact 
results (27)-(30) of laminar film condensation and 
forced convection on isothermal vertical surfaces. 
This proves our model validity. However, for the 
considerable wall resistance case of ε > 0, w 

unfortunately, no practical or theoretical data (to 
our knowledge) are available in the literatures to 
be used for comparing with to test the model 
validity in this ε  range. An alternative way is to w

construct special model problems, which can also 
be solved numerically by employing the known 
FLUENT program. Then, a comparison between 
FLUENT and model solutions can be made. For 
this objective, a model problem was constructed 
referring to fig. 1. In this problem, the solid wall is a 1-mm, stainless steel sheet of height, H = 0.5 

om and thermal conductivity k = 16 W/ m C. The vapour medium is a pure saturated steam of T = s 
o100 C. The cooling fluid is a pure water of free-stream velocity u = 0.7 m/s and temperature T  =  c,  c

o30 C. The FLUENT software (v. 14.5) was used to solve this problem under the same simplifica-
tions applied in the present model. For these problem data, the corresponding values of  λ and ε , w

calculated by eq. (19), are 1.253 and 0.058, respectively. These λ and ε values are used to w 

calculate our model solution. A comparison between model and corresponding FLUENT results 
is displayed in fig. 9, which shows an agreement of ± 3%. Some recent condensers are made from 
composite-polymer solid plates of low thermal conductivity to avoid high cost and corrosion [18-
20]. Therefore, the same special problem was resolved for an identical composite-polymer plate 
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(31)=  0.9353 +               −                                            for 0.0 ≤ ε  ≤ 0.5 and 0.02 ≤ λ ≤ 30w
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0.9 0.54(1+0.45ε / λ )w

[ [

Figure 6. Distribution of temperature drop across
wall for different ε -parameter.w

Figure 7. Variation of mean conjugate Nusselt
number with λ and ε  parameters.w

Figure 8. Correlation (31) against correlated
data



of thermal conductivity k = 2.5  W/ (m K) instead the 
stainless-steel plate. In this case, the calculated values 
of λ and ε are 1.253 and 0.347, respectively. A compa-w 

rable agreement between the present model and 
FLUENT results was also found. However, this 
comparison is not displayed in a graph to avoid 
repetition. 

As a brief report on the FLUENT procedure 
applied, the mass, momentum and energy boundary-
layer equations of forced convection and condensate 
film were solved together with the wall conduction 
equation using a control-volume scheme. A second-
order upwind scheme was used to linearize the energy 
and momentum equations. A segregated solver was 
used to solve the resultant linear equation system. 
Under-relaxation factors were introduced to control the solution convergence. Rectangular cells 
with successive ratio = 1.03 were used in both fluid domains, while square cells were chosen for 
the wall region. As a convergence measure to stop the solution trails, the variation in all tempera-

−6ture and velocity nodes was set to be ≤ 10 .  

Conclusions
A theoretical model has been constructed for the conjugate problem of film condensa-

tion on the vertical surface of a solid wall cooled on the back side by forced flow. The forced-
convection boundary-layer was analyzed by employing the integral technique, and the film 
condensation by employing the boundary-layer theory and Nusselt-Rohsenow simplifications.  
The study indicated that the conjugation between film condensation and forced convection across 
a conductive solid wall is governed mainly by 2-D factors  and . The factor  represents the w λ  ε λ
ratio of condensate film to forced convection layer resistance, while the dimensionless factor   w ε
represents the ratio of solid wall to forced convection layer resistance. For the special case of 
negligible wall resistance, the model yields analytically the same known exact results of film 
condensation and forced convection on isothermal vertical surfaces. This proves the model 
validity. The model was also solved numerically by employing the Runge-Kutta procedure for 
the parameter ranges:  Numerical results showed that the mean  0 ≤ ε < 0.7 and 0.01 < λ < 40.w 

conjugate Nusselt number rises with increasing  or/and decreasing . An explicit simple wλ ε
formula for predicting the mean conjugate Nu number as a function of  and could be obtained w λ ε
by correlating around 3000 numerical data points within ±2 %. The model validity has also been 
tested by a comparison with FLUENT results.
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Figure 9. Comparison between model and
FLUENT results
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-2− gravitational acceleration, [m∙s ]
− scale of condensate film thickness,
   cf. eq. (4), [–]
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g
lf

H
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