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The modeling accuracy of artificial neural networks (ANN) was evaluated by us-
ing limited heat exchanger data acquired experimentally. The artificial neural net-
works were used for predicting the overall heat transfer coefficient of a concentric 
double pipe heat exchanger where oil flowed inside the inner tube while the water 
flowed in the outer tube. In the cases of parallel and counter flows, the experimen-
tal data were collected by testing heat exchanger in wide range of operating con-
ditions. Curve fitting and artificial neural network combination was used for the 
estimation of the overall heat transfer coefficient to compensate the experimental 
errors in the data. The curve fitting was used to detect the trend and generate data 
points between the experimentally collected points. The artificial neural network 
was trained better from the generated data set. The feed forward type artificial 
neural network was trained by using the Levenberg-Marquardt algorithm. Two 
backpropagation network type artificial neural network algorithms were also used, 
and their performance were compared with the estimation of the Levenberg-Mar-
quardt algorithm. The average estimation error between the predictions and the 
experimental data were in the range of 1.31e–4 to 4.35e–2%. The study confirmed 
that curve fitting and artificial neural network combination could be used effective-
ly to estimate the overall heat transfer coefficient of heat exchanger.
Key words: modeling, overall heat transfer coefficient, curve fitting,  

artificial neural network

Introduction

Over the last decades, heat exchangers (HX) have become increasingly important 
because of their rules in energy conservation, recovery, conversion, and implementation of new 
energy sources. The HX are widely used in air-conditioning and refrigeration, power, trans-
portation, alternative fuels, heat recovery, cryogenic, and manufacturing industries, as well as 
being key components of many industrial products available in the marketplace. Although sig-
nificant advances have taken place in the development of HX manufacturing technology as 
well as design theory [1-4], new industrial challenges require further research in HX analysis, 
particularly using advanced methodologies, such as artificial neural networks (ANN).

The ANN have been applied in modeling heat transfer phenomena of different HX 
applications because of its ability in providing better and more reasonable solutions [5, 6]. 
Pacheco-Vega et al. [7] predicted the performance of fin-tube HX and air-water HX using 
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ANN. Mohanraj et al. [8] reviewed the application of ANN for thermal analysis of HX. The use 
of ANN-based neuro-controllers in HX is a recently developed field. Díaz et al. [9] reported 
dynamic prediction and control of HX using ANN. Esfe [10] has applied the post-processing 
of experimental data on the flow and heat transfer in a nanofluid-based double tube heat ex-
changer using an ANN. Naphon et al. [11] have studied on the application of ANN to analyze 
the heat transfer and friction factor of the horizontal double tube HX with spring insert. Fadare 
and Fatona [12] developed an ANN model for modeling the overall heat transfer coefficient of 
a staggered multi-row, multi-column, cross-flow, tube-type HX. Islamoglu [13] developed an 
ANN model for predicting the suction line outlet temperature and mass flow rate of a capillary 
tube suction line HX used in household refrigerators. Shabiulla and Sivaprakasam [14] have 
conducted experiments by using cold fluid (Butanol) and hot fluid (water) in constant mass- 
-flow rate of hot fluid and they have proposed ANN models for the analysis of a spiral plate HX. 
Xie et al. [15] set up an experimental system for investigation on performance of shell-and-tube 
HX and obtained limited experimental data. They predicted temperature differences and heat 
transfer rate for HX using the ANN. Colorado et al. [16] designed a physical-empirical model 
to describe heat transfer of helical coil in oil and glycerol/water solution. Patra et al. [17] have 
designed and developed an ANN model for process modelling of intermediate HX subsystem 
in nuclear reactor. 

Several investigators have also focused on some research on HX. Erdogan and Colpan 
[18] assessed the effect of the source temperature on the performances of the shell and tube 
heat exchanger and the organic Rankine cycle. Ali et al. [19] observed that this design feature 
of a counter-flow heat and mass exchanger can lead to a substantial increase of dew-point and 
wet-bulb effectiveness. Direk and Kelesoglu [20] presented the energy and exergy analysis of 
an R1234yf automotive air conditioning system. For this aim, an experimental baseline an au-
tomobile air conditioning system was developed and a double pipe internal HX was employed 
to the system.

Curve fitting (CF) regression analysis is used to find the best fit of curve for a series 
of data points. The curve fit generally produces an equation that can be used to find points any-
where along the curve. Because the experimental data always contains error, it is required to fit 
the data as well as possible. The CF is performed to fit data sets that contain outliers.

In recent researches, some CF were applied to the experimental data for the best fit of 
curve for a set of data points. The CF was applied to the performance of heat pump determined 
by manufacture’s catalog data [21]. The CF was applied to experimental data of shell tube HX 
[22]. Mathematical information of relation between optimum exergy efficiency and the total 
length of the system was given by the fitted curve [23]. 

During experimentally the tests, some errors in the acquired data were likely to dete-
riorate the prediction performance of the developed model. Thus, we proposed CF and ANN 
combination to represent the experimental data when only limited number of readings were 
available. For better results of calculation, some correlations in good estimating confidence 
intervals for the optimal result of input values were performed by using CF. Otherwise, lack of 
the acquired data may lead to cause poor performance of the ANN model. Sufficient data were 
generated for better training and testing with the help of correlations. 

A concentric double pipe oil to water HX was used for modeling of overall heat trans-
fer coefficient. The goal of this study is to estimate the overall heat transfer coefficient, U, of the 
heat changer using CF and ANN combination. For this aim, an experimental set-up was devel-
oped. Unlike similar ones, HX is fixed to the experimental set-up with 45° inclination. The oil 
inlet and outlet temperatures, water inlet and outlet temperatures, and water mass flow rate were 
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used as the input data of the ANN model, while the U was used as the output of the model. Each 
flow mode was performed separately by using three ANN algorithms and the obtained results 
were compared with the experimental values. 

Theoretical background

Types of flow configuration

The HX transfer heat between two or more streams of fluid that flow through the 
equipment. A major characteristic of HX design is the relative flow configuration, which is the 
set of geometric relationships between the streams.

It must be accentuated that the configurations described represent idealizations of 
what truly occurs. In practice, it is never possible to make the flow patterns comply to the 
ideal. In a counter-flow heat exchanger, the two fluids flow parallel to each other in opposite 
directions. 

Curve fitting and ANN modeling

Because experimental data always contain error, connecting the dots on a graph is not 
commonly preferred. Instead of connecting the dots on a graph, CF is used to find the best fit of 
line or curve for a series of data points. The curve fit generally produces an equation that can be 
used to find points anywhere along the curve [24].

The ANN comprise a multiple layers, which are termed input, hidden, and output 
layer, respectively. These layers consist of input nodes, hidden nodes, and output node(s), re-
spectively [25]. The characteristics of the systems may be modeled by using CF methods and 
ANN methods evaluate the parameters of a theoretical or empirical equation. The ANN use the 
same generic equation to represent the characteristics of any system without demanding any 
models. The experimentally collected concentric double pipe heat exchanger data was modeled 
by use of ANN. 

The author previously implemented a resilient backpropagation (RB), a scaled conju-
gate gradient backpropagation (SCG), and a Levenberg-Marquardt (LM) algorithm to estimate 
the faulty conditions of the vapor compression refrigeration system [26]. In this study, the same 
three types of ANN algorithms were used to model the considered system.

Description of the experimental set-up and testing procedure

In this study, an experimental set-up was developed for data generation. The experi-
mental set-up consisted of a heater tank, a HX, a circulation pump, a bypass and flow control 
valve, a proportional integral derivative (PID) controller with resistance temperature detector 
(RTD) and a flow meter. The HX was fixed to the experimental set-up with 45° inclination. In 
addition, temperature measurements at 4 points were performed on the set-up. The schematic 
diagram of the experimental set-up is shown in fig. 1. 

The components of the experimental set-up are explained: (a) heat exchanger: A con-
centric double pipe HX has been designed with the goal of accomplishing maximum heat trans-
mission at minimum pressure drop. The outer spiral-formed space leads water in a flow counter 
to the flow of oil in the inner space. Built into the inner space are offset fin sections [27]. The 
HX was manufactured from brass and copper, and has very small dimensions in relation to 
its heat transmission capacity. The spiral formed outer space forces the hot refrigerant liquid 
over the entire heat transmission surface and prevents the formation of condensate on the outer 
space. The built-in offset fin sections in the inner space produce turbulent flow in the refriger-
ant vapor. Thus, the heat transmission from liquid to vapor is very effective. At the same time, 



Kocyigit, N., et al.: Modeling of Overall Heat Transfer Coefficient of a Concentric Double Pipe ... 
3582	 THERMAL SCIENCE: Year 2019, Vol. 23, No. 6A, pp. 3579-3590

pressure drop is kept down to a reasonable 
level. The detail of the HX is given in tab. 1. 

This HX was manufactured for the 
liquid-vapor lines of refrigeration systems. 
(b) heater: The electric resistance type 
heater is placed near the bottom side of a 
steel tank, and has a capacity of 1000 W. 
(c) PID controller: Heater is controlled by 
a PID temperature controller using SSR. 
It has self-tuning feature. (d) temperature 
sensor: A RTD is used as a temperature 
sensor (PT100), and it is located in the 
middle of the heater tank. (e) circulation 
pump: The pump has 5.6 mH2O head pres-
sure, and 3.4 m3/h flow rate. (f) multi tem-
perature selector and display: Oil inlet and 
outlet temperatures, where are located at 
the oil inlet (point 1) and outlet (point 2) of 
the heater tank, are measured by RTD type 
sensor. Water inlet and outlet temperatures, 

where located at the inlet (point 3), and outlet (point 
4) of the HX water line, are measured by NTC type 
thermistors. Some features of the instrumentation 
are summarized in tab. 2.

The ANN modeling approach for parallel flow 
and counter flows has been applied to the experimen-
tal set-up shown in fig. 1. The oil is pumped into the 
central tube and comes in contact with the count-
er-flowing water, which is supplied from the city wa-

ter line into the annular space. The oil is heated by electric resistance and its temperature is 
controlled by PID controller and a SSR. A control valve is provided to adjust the flow rate of 
the water. Various transport properties of the oil is given in tab. 3. Measurements were taken 
in the range of 100 L/h to 500 L/h with 20 L/h increments. In the experimental study, totally 
21 different steady-state test runs for parallel flow and counter flow have been conducted to 
gather data for training the proposed ANN model and testing its performance. The ranges of 
measured variables for parallel flow and counter flows are shown in tab. 4. 

Data generation and ANN modeling

Due to measurement errors, the acquired data had error. The accuracy of the data 
was improved by using the CF method which reduced the errors by smoothing the curve. This 
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Figure 1. Schematic diagram of  
the laboratory type HX unit

Table 1. Characteristics of the HX
Characteristic Value

Weight, [kg] 1.692
Outer diameters of tubes, [mm] 41.3
Wall thickness of tubes, [mm] 1.27
Tube length, [mm] 310
Inlet size, [mm] 28
Max. Working Pressure, [bar] 21.5
Outlet size, [mm] 12

Table 2. Characteristics of the instrumentation
Measured variable Instrument Range Accuracy

Oil temperature, [ºC] RTD type sensor –50 to 200 0.3 ºC
Water temperature, [ºC] NTC type thermistor –20 to 100 0.2 ºC
Water mass-flow rate, [Lh–1] Variable area flow meter 50-500 5%
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approach reduces the possible ANN representation errors when the number of hidden nodes is 
increased. To fix or reduce errors in experimental data, CF equations of polynomial and expo-
nential series models were used to do the best fit of data. 

The CF equation of polynomial series [28], y, in a single indeterminate can be ex-
pressed: 
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where i, n, p, and x are iteration number, number of term in the series, constant value, and vari-
able respectively. 

Water input data, Tc,in, and output data, Tc,out, for counter flow were calculated by us-
ing polynomial eq. (1) with third degree and with fourth degree, respectively. However, for 
parallel flow they were calculated by using equationd with third and first degree, respectively. 
The best fit of Tc,in and Tc,out for counter and parallel flows were acquired. Oil input data, Th,in, 
and output data, Th,out, for parallel flow were calculated by using a polynomial equations with 
fourth degree. However for parallel flow, they were calculated by using with first degree, and 
the best fit of Th,in and Th,out was acquired. Water mass-flow rate, wm , was calculated by using a 
polynomial equation with first degree and the best fit of wm  was acquired.

After acquiring data by using calculations, the logarithmic mean temperature differ-
ence (LMTD) method was tested to calculate the overall heat transfer coefficient, U. This meth-
ods can be explained as follows [2-4].

Because the temperature difference between the oil, Th, and water, Tc, streams varies 
along the length of the concentric double pipe HX, it is essential to derive an average tempera-
ture difference from the heat transfer calculations. 

Table 4. Range of measured variables in the experiments 
for parallel flow and counter flows

Measured variable Instrument Parallel 
flow

Counter 
flow

Oil input temperature, [ºC] RTD type sensor 55.7-45.3 52.3-42. 8
Oil output temperature, [ºC] RTD type sensor 55.8-45.9 52.5-43.3
Water input temperature, [ºC] NTC type thermistor 15.2-13.8 15.2-13.7
Water output temperature, [ºC] NTC type thermistor 25.5-15.9 24.4-15.6
Water mass-flow rate, [Lh–1] Variable area flow meter 100-500 100-500

Table 3. Transport properties of oil

Transport properties Test standards Value

Density, at 20 °C, [kgm–3] DIN 51757 0.869
Viscosity, at 40 °C,[mm2s–1] DIN 51562 33
Flame point, [ºC] DIN 51584 220
Working temperature, [ºC] 350
Specific heat, at 45 °C, [kJkg–1K–1] 1.977
Thermal conductivity, [Wm–1K–1] 0.12
Freezing point, [ºC] ISO 3016 –16
Boiling point, [ºC] DIN 51582/ISO 3733 360
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Let Th and Tc, respectively, denote the temperature of the hot and cold fluids. Further-
more, let 1T∆  and 2T∆  stand for the temperature difference at each terminal side of the HX, i. e., 
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where c,inT  and c,outT  are input and output temperatures of the cold fluid and h,inT  and h,outT  are 
input and output temperatures of the hot fluid respectively.

The LMTD can be calculated from:
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with 1T  and 2T  as defined in eqs. (2) and (3).
U can be calculated:
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where eQ  is heat transfer rate which is emitted from hot liquid and  sA  is heat transmission area.
Followings are the assumptions made in the thermal analysis of heat exchanger by 

LMTD:
–– U is constant over the length of fluid.
–– The specific heat is constant over entire length of path.
–– There are no partial phase changes in the system.
–– Heat losses to the surrounding air are negligible because pipe, heater tank and circulation 

pump are insulated by rockwool. 
After acquiring and calculating all necessary data, the network architecture of CF and 

ANN model has been applied to predict optimal results of the counter flow and the parallel flow 
for the overall heat transfer coefficient, U. Input nodes which are oil input temperature, Th,in, oil 
output temperature, Th,out, water input temperature, Tc,in, water output temperature, Tc,out, and 
water mass-flow rate, wm , were used and output node which is the overall heat transfer coeffi-
cient, U, was used. The different number hidden nodes were used to predict an optimal result of 
counter and parallel mass-flow rates.

The performance of the ANN is evaluated by assessing the estimation errors on the 
training data. Then, the estimation error on the testing data is recalculated after the ANN pre-
dicts the output(s). The estimation errors on the testing data are generally higher compared to 
the training data. Respect to range of target data, average percentage error of every predicted 
output of training and testing data was defined:
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where eA  is the experimental data, pA  is the predicted result, and N is the number of data. The 
network architecture of this ANN model with CF is shown in fig. 2. 
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Furthermore, one-way ANO-
VA were employed for determining 
the means of groups. The ANOVA 
uses F-statistic to statistically test 
the equality of means. The F-sta-
tistic simply a ratio of the mean 
squared errors. The sources of vari-
ance on experimental values of the 
two or more groups can be separated 
into constituent parts and accurately 
measured. The ANOVA returns to 
the p-value for a balanced one-way 
ANOVA by group. The p-value is 
the probability that the test statistic 
may take a value greater than the 
value of the computed test statistic 
[29].

Limitations of ANN modeling for HX  
and uncertainty analysis

The major limitations of ANN for HX analysis consist of over training errors, extrapo-
lation errors and optimization of network configuration [30]. In this study, the network consist-
ed of one input layer with 5 neurons, one hidden layer, and one output layer with one node, fig. 
2. The number of hidden nodes increased from 1 to 40. The LM, RB, and SCG type ANN were 
trained and tested by using the generated data. The LM had the best estimations in all the cases 
after 40 trials and 1000 training iterations for each cases when the results of estimating errors 
were compared. For compact representation and consistency, the LM type ANN with 8 hidden 
nodes was selected. Due to the best performance, the LM type ANN was selected to represent 
ANN. The ANN parameters for LM type ANN were shown in tab. 5. 

The uncertainty analysis for the overall heat transfer coefficient, U, for the counter and 
parallel flows was performed using by Moffat in [31]. According to this method, the function, R, 
is presumed to be computed from a set of the totally N measurements represented:

	 ( )1 2 3, , , , NR R m m m m= … 	 (7)

Then the uncertainty of the result R can be calculated:
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Using the accuracies for the measured variables denoted in tab. 2, the uncertainty of 
the calculated U was determined with the evaluation of eq. (7) in eq. (8). The total uncertainty 
of U for the counter and parallel flows was 6.95% and 6.18%, respectively.

Results and discussion

In this section, the characteristics of the data and the need for CF will be discussed. 
Next, the empirical model for representation of the experimental data was introduced. Then, 

Figure 2. Network architecture of CF and ANN model
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data generation for training of the ANN will be outlined. Finally, the performance of the ANN 
will be discussed.

Experimental data were collected with parallel flow and counter flow studies. Mea-
surements were taken in the range of 100 L/h to 500 L/h with 20 L/h increments. Therefore, 21 
different measurements were taken in each case (mode). The U for parallel and counter flows 
was calculated by the LMTD method. The calculated U for the parallel flow was in range of 
297.683 to 309.906. However, for the counter flow the calculated U was in range of 324.365 
to 369.228. The ANN had one input layer with 5 nodes, one hidden layer, and one output layer 
with single node. The LM, SCG, and RB type ANN were trained with 14 cases while the num-
ber of hidden nodes was increased from 1 to 40. The performances of the ANN were evaluated 
by using the 7 cases which they never saw before. The average estimation percentage errors, 
Rave, without CF for testing were in the range of 31.1% to 0.75% when the LM type of ANN 
was used. Due to measurement errors, the acquired data had error. The accuracy of the data 
was improved by using the CF method which reduced the errors by smoothing the curve. This 
approach reduces the possible ANN representation errors when the number of hidden nodes is 
increased.

Secondly, sufficient data was generated by CF for better training of the ANN. Polyno-
mial series models were used to fit a curve to the experimental data and to generate the training 
cases for the ANN. The curves generated by the empirical models were always within the 95% 
confidence bounds of the data. The water input, Tc,in, temperatures for counter flow were de-
rived from eq. (1) with third degree. However the water output, Tc,out, were derived from eq.(1) 
with fourth degree. The R2 of Tc,in and Tc,out were 0.9996 and 0.9993, respectively. Water input, 
Tc,in, temperatures for parallel flow were derived eq. (1) with third degree. But, the water output, 
Tc,out, were derived from eq. (1) with one term. The R2 of Tc,in and Tc,out were 0.9986 and 1, re-
spectively. Oil input, Th,in, and output, Th,out, temperature for the counter flow were derived from 
the polynomial equation with fourth degree and R2 of Th,in and Th,out were 0.9992 and 0.9991 
respectively. However, oil input, Th,in, and output, Th,out, temperatures of parallel flow were de-
rived from the polynomial equation with one term. The R2 of Th,in and Th,out were 0.9993 and 
0.9983 respectively. The mass-flow rate of water was derived from polynomial equation, and R2 
of wm  was 1. 

Third, the performances of the CF methods were compared and the best model was 
selected. Smoothened data were generated with the best model for training of the ANN. The 
average estimation percentage errors, Rave, with CF for testing were in the range of 6.332% to 
0.003% when the LM type of ANN was used. Due to unsatisfactory performance of ANN after 

Table 5. Neural network parameters for LM type ANN
Parameter Value Description

net.trainParam.epochs 1000 Maximum number of epochs 
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 1000 Maximum validation failures
net.trainParam.min_grad 1e–20 Minimum performance gradient
net.trainParam.mu 0.001 Initial mu
net.trainParam.mu_dec 0.1 mu decrease factor
net.trainParam.mu_inc 10 mu increase factor
net.trainParam.mu_max 1e20 Maximum mu
net.trainParam.show 25 Epochs between displays
net.trainParam.time inf Maximum time to train in seconds
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training and testing with 21 cases, 101 cases were generated with the selected empirical model. 
The LM, SCG, and RB type ANN were trained with 67 cases, while the number of hidden nodes 
increased from 1 to 40. The performances of the ANN were evaluated by using the remaining 
34 cases which they never saw before. By using trial and error method with different ANN 
configurations, it was decided to have the network consisting of one input layer with 5 neurons, 
one hidden node, and one output node. 

Finally, the Rave was calculated for all the ANN after 40 trials and 1000 training 
iterations for each cases. Table 6 showed that in case of the counter flow, the best estimations 
were obtained when the hidden nodes were selected 8, 10, and 34 with the LM, RB, and SCG 
type ANN when the LMTD method were used respectively. The LM gave the best estimations 
in all the cases. For the counter flow the most accurate U value estimations were obtained 
with the LMTD method when 8 hidden nodes were used according to tab. 6. According to 
tab. 7, for the counter flow the best estimations were obtained when the hidden nodes were 
selected 19, 7, and 37 with the LM, RB, and SCG type ANN when the LMTD method were 
used, respectively.

Table 6. Average estimation errors of U during counter flow with LM, RB, and SCG type ANN
Hidden 
nodes

LM [%] Hidden 
nodes

SCG [%] Hidden 
nodes

RB [%]
Training Testing Training Testing Training Testing

6 0.000551 0.000782 8 0.005562 0.006034 32 0.052081 0.060628
7 0.000151 0.000223 9 0.003698 0.004322 33 0.071212 0.068304
8* 0.0001771 0.000121 10* 0.002583 0.002664 34* 0.041575 0.043573
9 0.000212 0.000373 11 0.009559 0.010338 35 0.10671 0.11832

10 0.000241 0.000564 12 0.009125 0.010833 36 0.15567 0.16574
* Best result

Table 7. Average estimation errors of U during parallel flow with LM, RB, and SCG type ANN
Hidden 
nodes

LM [%] Hidden 
nodes

SCG [%] Hidden 
nodes

RB [%]
Training Testing Training Testing Training Testing

17 0.00070805 0.0015117 5 0.003944 0.004041 35 0.16044 0.17488
18 0.00023498 0.00034189 6 0.019334 0.021156 36 0.13307 0.15055
19* 0.00022498 0.00013071 7* 0.00217 0.002512 37* 0.027766 0.031096
20 0.00025861 0.00035 8 0.012609 0.014893 38 0.10287 0.10698
21 0.00011526 0.00018744 9 0.012872 0.014098 39 0.16836 0.19903

* Best result

For compact representation and consistency, the LM type ANN with 8 nodes was 
selected. The Rave value was 0.000121% which means that the LM type ANN was capable to 
learn at high accuracy. The R-square error, R2, for the training, the testing, and the validation 
was 1 when the LM type ANN for counter flow and parallel flows were trained. Furthermore, 
ANOVA was employed to determine differences between the predicted U for 21 cases without 
CF, 21 cases with CF, and the genarated 101 cases. The F-statistic was F = 0.0044 (p = 0.9473) 
when 21 cases without CF and with CF were used. The F-statistic was F = 0.0051 (p = 0.9431) 
when 21 cases without CF and generated 101 cases were used. The F-statistic was F = 3.36e–4  
(p = 0.9854) when 21 cases with CF and generated 101 cases were used. The F-statistic was 
0.003 (p = 0.997 when all cases were used.) The F-statistic for all cases indicated that all groups 
have no significant difference. All type of test indicate that the generated 101 cases have more 
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accuracy than 21 cases without CF and with CF. For the counter flow mode, the predictions 
of the ANN were compared with the experimental results in fig. 3. The estimations were very 
close to the experimental data. According to the generated U (Ug) and the predicted U (Up), 
the 3-D plot in fig. 4 illustrated the U prediction performance of the LM type ANN respect to 
three inputs: the temperatures of the water at the entrance, at the outlet, and the mass-flow rate 
of water. For the counter flow, the maximum value of U was obtained with LMTD method was 
369.23, fig. 4. 

Figure 3. Comparison of Rave error for LM, RB, 
and SCB testing data

Figure 4. The 4-D Plot out of U for  
LM algorithm
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Conclusions

In the paper, CF and ANN combination was proposed to represent the experimental 
data when only limited number of readings is available. The curve fitting increased the data 
points with the help of the selected empirical model without creating extreme deviations be-
tween the data typically observed at the estimations of over fitted ANN models. 

yy In the study, empirical equations were used to smoothen the experimental data and to in-
crease of the cases for the training and testing data. The performances of the empirical 
equations varied from case to case. The prediction of the LM, RB, and SCG type ANN, 
which were trained and tested by using the generated data, were compared when the LMTD 
method were used respectively. The results have been discussed in term of astimating errors. 
The LM type ANN gave the minimum estimation errors.

yy The results indicated that CF and LM type ANN combination may be used to represent the 
experimental data when limited number of test points were obtained experimentally. The 
performances of the curve fitting methods were very close to each other in the considered 
cases, and any of them could be used to smoothen the data and to generate training and test 
cases for the ANN.

Nomenclature
As	 –	 heat transmission area, [m2]
i	 –	 iteration number
m	 –	 independent variable
N	 –	 number of data
p	 –	 constant value

eQ 	 –	 heat transfer rate emitted from  
hot liquid, [W]

R	 –	 a function of independent variables
R2	 –	 adjusted R-squared
Rave	 –	 average percentage error, [%]
T	 –	 temperature, [ºC]
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∆T	 –	 temperatures differences, [ºC]
U	 –	 overall heat transfer  

coefficient, [Wm–2K–1]

Subscripts and superscripts

c	 –	 cold
e	 –	 experimental
g	 –	 generated
h	 –	 hot
in	 –	 inlet
m	 –	 mean	
n	 –	 number of term in the series
out	 –	 outlet
p	 –	 predicted

Acronyms

ANN	 –	 artificial neural network
CF	 –	 curve fitting
HX	 –	 heat exchanger
LM	 –	 Levenberg Marquart
LMTD	–	 logarithmic mean temperature difference
min	 –	 minimum
mH2O	 –	 meter of water coloumn
NTC	 –	 negative temperature coefficient
PID	 –	 proportional + integral + derivative
PT100	 –	 temperature sensor
RB	 –	 resilient backpropagation
RTD	 –	 resistance temperature detector
SCG	 –	 scaled conjugate gradient
SSR	 –	 solid state relay
SV	 –	 solenoid valve
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