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Thermosolutal convective instability in a horizontal layer affected by rotation is 
studied. Stationary convection and over-stability cases are considered for differ-
ent boundary conditions. Analytical solutions were obtained when both bounda-
ries are free and numerical results were obtained for the cases of free and rigid 
boundaries. The numerical computations of this problem were performed using 
the method of expansion of Chebyshev polynomials. This method is better suited 
to the solution of hydrodynamic stability problems than expansions in other sets 
of orthogonal polynomials. This method not only has high accuracy but also al-
lows stationary and over-stable modes to be treated simultaneously, which is im-
portant if perchance the critical eigenvalue flits between the different modes in 
response to changing parameter values. The results obtained show that the effect 
of both solute concentration and rotation is to stabilize the system for stationary 
convection case and for the over-stability case when both boundaries are free. 
However, when both boundaries are rigid some unexpected behavior are ob-
tained in the case of over-stability.  
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Introduction  

Thermal instability theory has attracted considerable interest and has been recog-

nized as a problem of fundamental importance in many fields of fluid dynamics. Rayleigh [1] 

provided a fundamental theoretical basis for the thermal instability in a fluid layer heated 

from below. The instability of a layer of fluid heated from below and subjected to Coriolis 

forces was first studied by Chandrasekhar [2] and Chandrasekhar and Elbert [3] for stationary 

convection and over-stability respectively. They showed that the effect of Coriolis forces on 

the instability of the fluid layer is to inhibit the onset of instability. Several other authors dis-

cussed the instability of fluids and the effect of rotation, Abdullah [4], Julien et al. [5], Chun 

et al. [6], Prosperetti [7],  Geurts and Kunnen [8], Horn and Shishkina [9], Khan and Shafie 

[10], and Sharma et al. [11]. 
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Previous studies, Stern [12], Walin [13], Veronis [14], and Nield [15], showed that 

the presence of salinity in convection problems usually has the effect of inhibiting the devel-

opment of instabilities when the solute concentration decreases upwards and the fluid is heat-

ed from below. However, it has an opposite effect when the solute concentration increases 

upwards. Moreover, if the fluid is heated from above and soluted from below, then the tem-

perature at the bottom of the fluid will be relatively high comparing to the other parts of the 

fluid. A comprehensive review of literature concerning thermosolutal convection can be 

found in Nield and Bejan [16]. Further studies in thermosolutal convection are presented in 

[17-24]. 

This work studies thermosolutal convective instability in a horizontal layer affected by 

rotation. Stationary convection and over-stability cases are considered for different boundary 

conditions. Analytical solutions were obtained when both boundaries are free and numerical re-

sults were presented for the cases of free and rigid boundaries. Many flows in nature are driven 

by buoyant convection and subsequently modulated by rotation. This problem can be expected 

to exist near coastal regions where tidal effects could carry salty warm water under fresher cold 

water, or in areas such as the eastern Atlantic where salty Mediterranean water flows out 

through the strait of Gibraltar into the open ocean. The problem is of great importance because 

of its application to atmospheric physics, oceanography, limnology and geophysical flows driv-

en by rotation. Salt gradient solar ponds are a good application of this problem.  

Formulation of the problem   

Consider an infinite horizontal layer occupied by an incompressible, viscous, soluted 

fluid. The fluid is subject to a constant gravitational acceleration in the negative x3 direction 

and is affected by rotation about the x3 axis with a constant angular velocity Ω. The governing 

equations for this problem are: 
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where vi is the velocity components, P ‒ the pressure, n ‒ the kinematic viscosity, g ‒ the 

acceleration due to gravity, T ‒ the temperature, c ‒ the solute concentration, T0, ρ0, and c0 are 

the temperature, density, and solute concentration at x3 = 0, respectively, α ‒ the coefficient of 

volume expansion, α′ ‒  the coefficient of solute expansion, κ ‒ the coefficient of heat conduc-

tion, and κ′ ‒  the coefficient of solute diffusion. These equations are supplemented by an 

equation of state which depends on the Boussinesq approximation which state that density is 

constat everywhere except in the body force term in the eq. (2) of motion where the density is 

linearly proportional to temperature, T, and solute mass concentration, c, i. e: 
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  0 0 01 ( ) ( )T T T T         (5) 

The fluid is confined between the planes x3 = 0 and x3 = d and on these planes, we 

need to specify mechanical, thermal and solute conditions. 

The linearized equations  

Equations (1)-(4) have a steady-state solution in which the fluid is at rest and the 

pressure, temperature and solute concentration are functions of 𝑥3 alone. i. e.: 

 3 3 3  0,  ( ,  ( ,  ( )  ) )iv P P x T T x c c x     (6) 

Now, let the steady-state solution be slightly perturbed such that: 

 '
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where ˆ ˆ ˆ  , n, a d iv c P are the linear perturbation of velocity, temperature, solute concentration 

and pressure, respectively. So the linearized form of eqs. (1)-(4) are: 
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Now, we use the non-dimensional variables * * * * * *  ,   ,   ,   ,   ,  and i ix t v c P such that: 
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then eqs. (7)-(10) become: 
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 2
, t 3 s 3 r 3    R R Ti
i i i i ijk j kP v c v

t


  


     


 (12) 

 2
r t 3P R    H v

t





 


 (13) 

 2
r sP R

c
H c

t


  


 (14) 

where superscript “*” has been dropped but all the variables are now non-dimensional and 

where the non-dimensional numbers Rt, Rs, Pr, Pr′, and Tr are given by: 
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where Rt is the thermal Rayleigh number, Rs – the concentration Rayleigh number, Pr – the 

viscous Prandtl number, Pr′ – the Schmidt number, and Tr – the Taylor number and where:  
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The boundary conditions 

The fluid is confined between the planes x3 = 0 and x3 = d, and on these planes, we 

need to specify mechanical, thermal, and solutal conditions. Suitable mechanical conditions 

assume either a rigid boundary on which no slip occurs or a free boundary on which no tan-

gential stresses act. Suitable thermal conditions assume either an insulating or a perfectly 

conducting boundary and suitable solutal conditions assume either a permeable or an imper-

meable boundary. 

Mechanical conditions 

For a rigid boundary, the no slip condition implies that the horizontal components of 

the fluid velocity and all of 𝑥1, 𝑥2 partial derivatives of each component of the fluid velocity 

vanish. Thus if A,i denotes the derivative of A with respect to i, then: 

v1 = v2 = 0   and   v1,1 = v2,2 = 0 

and from the continuity eq. (11) we obtain v3,3 = 0. If we introduce ξ to be the fluid vorticity, 

then ξ = curlv and it is clear that ξ3 = 0. For a free boundary no tangential stresses act, and we 

can show that v3,33 = 0, ξ3,3 = 0.  

Thermal conditions 

For a perfectly conducting boundary the temperatures of the boundary and imping-

ing fluid match, whereas on a perfectly insulating boundary no heat transfer can take place be-

tween the fluid and the surrounding, hence the normal derivative of temperature is zero. In 

mathematical terms, the thermal conditions are: 

ext ,3,  on a conducting boundary,   0,  on an insulating boundary      

where θext is the exterior non-dimensional temperature. 

Solute conditions 

The possible solute conditions are c = cext, on a permeable boundary, c,3 = 0 on an 

impermeable boundary, where cext is the exterior non-dimensional concentration. 

Normal mode analysis 

In many convection problems, the vector components parallel to the direction of 

gravity (i. e. the 𝑥3 direction) play a central role and so we introduce the variables 𝑤 and ξ 

such that 𝑤 = 𝑣3, 𝜉 = 𝜉3. When we take the curl of eq. (12), we obtain: 
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Taking the curl again we obtain: 
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Now, we consider a solution of the form: 

  3 1 2( )exp ( )x i nx mx t      

where n, m are the wave numbers for harmonic disturbance and 𝜎 is the growth rate. Thus eqs. 

(17)-(20) become: 
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where D is the operator ∂/∂x3, 
2 2( )a n m   is the wave number, and L = (D2 –a2). We 

may eliminate ξ, C and θ from eq. (22) to obtain: 
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 (25)  

which is a tenth order ODE to be satisfied by 𝑤. This problem has exact solutions only in the 

case of two free boundaries. However for the cases of two rigid boundaries or mixed bounda-

ries it is not possible to obtain exact solutions and we have to rely on numerical methods. In 

the following section we discuss the analytical method when both boundaries are free, how-

ever in the result section we shall present numerical results for free and rigid boundaries. 
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The free boundary problem 

In the following analysis, we shall consider both boundaries to be free. For the free 

boundary value problem w = D2w = 0 on x3 = 0,1. If we suppose that w = sin(lπx3), is a suita-

ble solution where A is a constant and l is an integer, then Dw = Alπcoslπx3, D2w = –
Al2π2sinlπx3, Lw = λw were λw = l2π2 + a2 and (25) becomes  
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The solutions of eq. (26) are functions of Pr, P′r, Tr, Rs, and Rt and we have to exam-

ine how the nature of these solutions depends on these variables by considering the following 

cases. Note that because of the complexity of eq. (26) it is not possible to discuss analytically 

the effect of over-stability but later on we shall discuss its effect from the numerical results. 

Case (1): when the fluid is heated from above and  

the solute concentration decreases upwards 

Here H = 1, H′ = –1. So we need to discuss the roots of the polynomial equation  

f(σ) = 0 where 
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To obtain the critical thermal Rayleigh number for the onset of stationary convection 

case we set σ = 0 in eq. (27). Thus 
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Since Rt is negative then no stationary convection happened. 

Case (2): when the fluid is heated from above and  

the solute concentration increases upwards 

Here H = 1, H′ = –1. To obtain the critical thermal Rayleigh number for the onset of 

stationary convection case we set σ = 0 in eq. (27). Thus 

 
2 23

2 2

πr
t s

T l
R R

a a

 
    

  
  (29) 

Clearly stationary stability is possible provided Rs > 1/a2(λ3 + Trl2π2). Moreover: 
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So the solute concentration has a stabilizing effect on the system, but the rotation 

has a destabilizing effect on the system in this case.  

Case (3): when the fluid is heated from below and  

the solute concentration increases upwards 

Here H = 1, H′ = –1. So from eq. (27) the thermal Rayleigh number for the onest of 

stationary convection has the form: 
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Clearly stationary stability is possible provided λ3/a2 + Tr (l2π2)/a2 > Rs. Moreover: 
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So it is clear in this case that the solute concentration has a destabilizing effect on 

the system but the rotation has a stabilizing effect on the system.  

Case (4): when the fluid is heated from below and  

the solute concentration decreases upwards 

Here H = 1, H′ = –1. So from eq. (27) the thermal Rayleigh number for the onset of 

stationary convection has the form Rt =  λ3/a2 + Rs + l2π2 (Tr/a2). From which we can see that: 
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It is clear that the solute concentration and rotation have a stabilizing effect on the 

system. 

Numerical method 

The numerical computations of this problem are performed using the method of ex-

pansion of Chebyshev polynomials. This method is better suited to the solution of hydrody-

namic stability problems than expansions in other sets of orthogonal polynomials. Chebyshev 

method has been used to obtain numerical solutions of thermal stability problems by several 

authors (Orszag [25], Hassanien and El-Hawary [26], Abdullah and Lindsey [27], Hassanien 

et al. [28], Straughan [29], Banjer and Abdullah [30]). The eigenvalue problem of eqs. (21)-

(24) together with the boundary conditions are to be solved numerically for the case when the 

fluid layer is heated from below and the solute concentration decreases upwards which corre-

sponds to case of eq. (4) in the previous section. This eigenvalue problem can be solved using 

free or rigid boundaries for the two cases of solute conditions. For free boundaries the condi-

tions are 30,  0,1w D x       and for rigid boundaries the conditions are 

30,   0,1w Dw x      . The interval (0, 1) is first mapped into the interval (–1, 1) by 

the transformation 32 1z x  . Thereafter, the variables of the problem are assigned the Che-

byshev spectral expansion: 
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where N is a user-specified number of Chebyshev polynomials. The system of ODE (21)-(24) 

and boundary conditions lead to a generalized eigenvalue problem of type  AY BY  in 

which B is a singular matrix. The eigenvalues, σ, and corresponding eigenvectors are calcu-

lated using a specialized routine. 

Results and discussion 

Both boundaries are free 

The relation between the concentration Rayleigh number, Rs, and the critical thermal 

Rayleigh number, Rct, for the stationary convection case is displayed in fig. 1 for different 

values of the Taylor number, Tr. It is clear from this figure that as Rs increases, Rct increases 

which indicates that the solute concentration has a stabilizing effect on the system. Moreover 

the figure shows that as Tr increases Rct increases which indicates that rotation has a stabiliz-

ing effect on the system. These results coincide with the results obtained in eq. (33) in the 

analytical solution of the problem. 

In the case of over-stability, the relation between the concentration Rayleigh num-

ber, Rs, and the critical thermal Rayleigh number, Rct for different values of the Taylor num-

ber, Tr, is displayed in fig. 2 when Pr = 0,5, P′r = 0,025. It is clear from this figure that as Rs 

increases Rct increases which indicates that the solute concentration has a stabilizing effect on 

the system for the over-stable case also. Moreover the figure shows that as Tr increases Rct in-

creases which indicates that rotation has a stabilizing effect on the system. The numerical re-

sults in this case show that there is a condition for over-stability to ensue. This condition de-

pends on the values of the Taylor number, Tr and the concentration Rayleigh number, Rs, As 

Tr decreases over-stability is possible provided that Rs exceeds a certain value as shown in fig. 

2. Figure 3 shows a comparison between stationary convection and over-stability cases. In 

this figure a relation between the concentration Rayleigh number, Rs, and the critical thermal 

Rayleigh number, Rct, is displayed when Tr = 0.105..When Tr = 0, stationary convection is the 

preferred mechanism if 500sR   otherwise over-stability is the preferred mechanism. When  

Tr = 105 over-stabilty is possible provided 100sR   and if this condition is satisfied then 

over-stability is always the preferred mechanism. 

 

Figure 1. The relation between Rs and Rct for the 
stationary convection case when both boundaries 

are free for different values of Tr 

 

Figure 2. The relation between Rs and Rct for the 
over-stability case when both boundaries are free 

for different values of Tr when Pr = 0,5 
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Both boundaries are rigid 

For the stationary convection case, the effect of the concentration Rayleigh number, 

Rs, on the critical Rayleigh number, Rct, is similar to that of the free boundary case as shown 

in fig. 4. However the effect of the Taylor number, Tr, in this case is unexpected. The figure 

shows that as Tr increases the critical Rayleigh number, Rct, decreases which indicates that ro-

tation has a destabilizing effect in this case. This behavior appears when 500sR   but below 

this value we notice that as Tr increases the critical Rayleigh number, Rct, increases. In the 

case of over-stability, the effects of the concentration Rayleigh number, Rs, and the Taylor 

number, Tr, on the critical thermal Rayleigh number, Rct, are displayed in fig. 5. These effects 

are similar to those of the stationary convection case. A comparison between stationary con-

vection and over-stability cases is displayed in fig. 6. In this figure, a relation between the 

concentration Rayleigh number, Rs, and the critical thermal Rayleigh number, Rct, is displayed 

when Tr = 0. Here the preferred mechanism flits between stationary convection case and over-

stability case.  

 

Figure 3. A comparison between stationary 

convection and over-stability cases when both 
boundaries are free for different values of Tr 

 

Figure 4. The relation between Rs and Rct for the 
stationary convection case when both boundaries 
are rigid for different values of Tr 

 

Figure 5. The relation between Rs and Rct for the 

over-stability case when both boundaries are rigid 
for different values of Tr 

 

Figure 6. A comparison between stationary 
convection and over-stability cases when both 
boundaries are rigid. Here Tr = 0 

Conclusion 

This work studies thermosolutal convective instability in a horizontal layer affected 

by rotation. Analytical solutions are obtained for the free boundary problem in the case of sta-

tionary convection. Typical cases are discussed analytically depending on heating and solute 

concentration in both boundaries. Numerical results are obtained using the method of expan-

sion of Chebyshev polynomials for the case when the layer of fluid is heated from below and 
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the solute concentration decreases upwards when both boundaries ar′e free and when both 

boundaries are rigid. The results obtained for the free boundary case coincide with the analyt-

ical solutions obtained. The effect of both solute concentration and rotation is discussed and 

results show that their effect is to stabilize the system for stationary convection case and for 

the over-stability case when both boundaries are free. However when both boundaries are rig-

id some unexpected behavior are obtained in the case of over-stability.  
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Nomenclature  

a – wave number [cm–1] 
c – solute concentration [kgm–3] 
cext – exterior solute concentration [kgm–3] 
d – thickness of fluid layer, [m] 
g – gravitational acceleration, [ms–2] 
P – pressure, [Nm–2] 
P′r – Schmidt number, (= n/k¢) 
Pr – viscous Prandtle number, (= n/k) 
Rs – concentration Rayleigh number,  

{=[(g|β¢|α¢)/k¢n]d4} 
Rt – thermal Rayleigh number,  

{=[(αg|β|)/kn]d4}  
T – temperature [°C] 
t – time, [s] 
Tr – Taylor number, {=[(4W2)/n2]d4} 
v – velocity, [ms–1] 

Superscripts 

xi – co-ordinates, (i =1, 2, 3) 
^ – linear perturbation quantity 

Greek symbols 

α – coefficient of volume expansion, [K–1] 
α′ – coefficient of solute expansion, [kgm–3] 
β – adverse temperature gradient, [Km–1] 
β′ – adverse concentration gradient [kgm–4] 
δij – Kronecker delta 
ϵijk – permutation tensor 
θ – dimensionless temperature 
θext – exterior dimensionless temperature 
κ – heat conduction coefficient, [Wm–1K–1] 
κ′ – solute diffusion coefficient, [m2s–1] 
n – kinematic viscosity, [kg/m–1s–1] 
ξ – fluid vorticity, [s–1] 
ρ – density of fluid layer, [kgm–3] 
σ – growth rate 
Ω – angular velocity, [rads–1] 

Subscript 

o – referential quantity 
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