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Laser heating is one of the most practical operations in the field of solid circuit 
production and thin condensed film treatment. The correct prediction of the heat 
propagation and flux into the micro/nanothin slab under laser heating has high 
practical importance. Many theoretical and numerical investigations have been 
performed for analysis of micro/nanoheat conduction based on one or 2-D ap-
proximations. For moving laser heating of thin films, with asymmetric paths, the 
one or 2-D analysis cannot be applied. The most appropriate equation for micro/
nanoheat transfer is the Boltzmann transport equation which predicts the phonon 
transport, precisely. In the present work, the 3-D microscale heat conduction of 
a diamond thin slab under fix or moving laser heating at very small time scales 
has been studied. Hence, the transient 3-D integro-differential equation of phonon 
radiative transfer has been derived from the Boltzmann equation transport and 
solved numerically to find the heat flux and temperature of thin slab. Regarding 
the boundary and interface scattering and the finite relaxation time in the equation 
of phonon radiative transfer, leads to more precise prediction than conventional 
Fourier law, especially for moving laser heating.
Key words: thin solid film, laser heating, phonon radiative transfer

Introduction

Improving the microelectronic technologies, progressing the new submicron de-
vices and producing the solar energy harvesters are some of the considerable aspects from 
the application of thin condensed films. The production of smaller devices needs to fast and 
high quality nanotechnology methods, altering the surfaces by heat treatment and thin film 
processing. 

One of the most important processes in the manufacturing of the micro/nanoelec-
tronic devices is the laser surface heating. Altering the defects of the atomic structure can 
be made by cooling and heating of thin layers which have been investigated in many re-
searches. The investigations of micro-nanoscale conduction heat transfer can be categorized 
and reviewed based on different subjects and methods of analysis which is discussed in the 
following.
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The independence of the heat transport to the size of structure is very important in mi-
cro/nanoscle heat transfer; hence the size of thin film and boundary conditions has been studied 
in many previous works. Zhang et al. [1] analyzed the phonon heat transport in thin films using 
particle dynamics and studied the size effect on thermal conductivity. The lattice temperature 
can influence on the thermal properties and heat transfer mechanics. Slobodanka et al. [2] used 
the photo-thermal frequency method for determination of thermal properties of thin solid lay-
ers. Yang and Baleanu [3] presented a local fractional variational iteration method for the local 
fractional heat transfer. Han et al. [4] introduced the adopted lattice Boltzmann for improving 
the thermal conductivities of 3-D nanograins

The frequency of the lattice vibration is the other important parameter in micro/na-
noscale heat conduction. Mansoor and Yilbas [5] studied the dependence of phonon radiative 
transport to frequency of the lattice vibration in the silicon film. They found a frequency de-
pendent solution of phonon radiative transfer equation which resulted in the sharper decay of 
equivalent equilibrium temperature than that corresponding to frequency independent solution. 
Walther et al. [6] studied the oscillation behavior and safe conditions of homogenous material 
using the lattice Boltzmann method (LBM) for 2-D pure diffusion.

Acquiring the thermal conductivity of a thin film has been investigated in many re-
searches. Grujicic et al. [7] studied the atomic-scale computations of the lattice contribution 
thermal conductivity of carbon nanotubes. Chen et al. [8] considered the effects of phonon 
reflection and transmission of quantum structures at the interface on the effective thermal con-
ductivities. 

The gap between two or more thin layers changes the amount of conducting heat, 
too. Cardona and Kremer [9] studied the temperature dependence of the electronic gaps of 
semiconductors and showed that the direct and indirect gaps is indispensable for optimizing the 
applications of semiconductors. 

The Boltzmann transport equation (BTE) describes the statistical behavior of a ther-
modynamic system not in a state of equilibrium, devised by Ludwig Boltzmann in 1872. 
Many researchers have used it for the micro/nanoscale heat conduction problems. Also, the 
LBM is used for numerical simulations, based on the BTE. Majumdar [10] developed the 1-D 
equation phonon radiative transfer (EPRT) equation from the Boltzmann transport theory to 
analyze the 1-D heat transfer in a thin film. Joshi and Majumdar [11] studied the unsteady 
ballistic and diffusive phonon heat conduction on thin films. They used the BTE with relax-
ation time approximation and derived the EPRT and solved this equation numerically. Raisi 
and Rostami [12], using 1-D EPRT, studied the unsteady heat transfer across a thin film which 
is made of double layers of GaA and ALA. They considered diffuse scattering of phonons at 
the interface and determined the temperature distribution of the layers and effective thermal 
conductivity of structures. Yang and Chen [13] using BTE simulated the nanoscale transient 
heat conduction. They performed several 2-D cases and compared the results of the BTE and 
Fourier. 

The literature review of the micro/nanoscale heat conduction is shown that there are 
many studies which have attempted to develop the thin solid film heat conduction. They have 
performed one or 2-D analysis. It is important to note that for some real engineering appli-
cations with free laser path, the one or 2-D assumption may lead to incorrect numerical pre-
dictions. Certainly, for this cases a 3-D analysis can better predict the propagation of the heat 
flux and the temperature of the thin solid film layer. Thus, in the present work, the transient 
3-D integro-differential equation of phonon radiative heat transfer or EPRT is used to analyze 
the heat transfer for a thin solid film under fix and moving laser heating at both short time and 
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spatial scales. Also, this article concerns with finding the differences between the EPRT and 
Fourier results.

Problem description

Figure 1 shows a schematic of a thin dia-
mond slab as a part of a thin film under the mov-
ing laser heating. A radial heat source with a radi-
us, R, can start to warm the center of the bottom 
surface and provides a constant heat flux, q″s, un-
der the thin slab. Outside the radius of the heat 
source, there is a convection heat transfer with a 
fluid with, h and T∞. Before start heating, the thin 
slab has a uniform temperature, T0, as an initial 
condition. The analysis has been performed in two 
separate sections: First for the problem with fix 
laser source and second for the case in which the 
laser source translates along the Y-axis with a fix 
velocity under the thin slab.

Mathematical formulation

The general equation governing on the heat transfer is the BTE:

laser
scatt

(v V )f ff
t t

∂ ∂ + + ∇ =  ∂ ∂ 





(1)

where f, v⃗, and V⃗laser are the distribution function, sound velocity and laser velocity, respectively. 
The right-hand term, scattering of the phonons, approximated by relaxation time:

0

scatt R

f ff
t

ω ω

τ
−∂  = ∂ 

(2)

where f 0ω, τR, and ω are the local equilibrium dis-
tribution function, the relaxation time and the fre-
quency of lattice vibrations, respectively. Both the 
Fourier law and EPRT may derive from the BTE by 
relative assumptions.

The 3-D form of the EPRT

Here, the derivation of the 3-D equation of 
phonon radiative transfer or EPRT from the BTE 
is explained. A Cartesian co-ordinate system is 
used to indicate each node with (x, y, z). The θ 
and ϕ are the polar and azimuthal angles for as-
sessing the radiation direction according to the 
fig. 2. So, can be defined in this system as the 
phonon intensity:

( , , , , , ) ( , ) ( , , , ) ( )p
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I x y z t v f x y z t Dω ωθ φ θ φ ω ω=∑  (3)
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Figure 1. Schematic description for laser 
heating of a thin solid slab

Figure 2. Schematic diagram of  
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The 3-D form of phonon intensity, I is the function of six parameters, p – is the sum-
mation is over the phonon polarization, ћω – the quantum of phonon energy at a frequency ω, 
D(ω) – the density of states, and ћ – the reduced Planck constant. The phonon intensity must 
substitute to the Boltzmann equation as Majumdar [10] described the detail of it for 1-D formu-
lation. Substituting the eq. (3) into eq. (1) the following equation is obtained:

0
laser ( )1 cos sin cos sin sin

( , )R

I I I V I I T I
v t z x v y v T

ω ω ω ω ω ωθ θ φ θ φ
τ ω

∂ ∂ ∂ ∂ − + + + + = ∂ ∂ ∂ ∂ 
(4)

where I0
ω is the local equilibrium intensity distribution and it is only a function of temperature. 

The relaxation time, τR – the characteristic time for the distribution of phonons in a solid to ap-
proach the equilibrium after removing the disturbances. The local equilibrium intensity:

1 2
0

1 0

1 d d
4

I Iω ω φ µ
π

−

=
π ∫ ∫ (5)

By substituting the eq. (5) into eq. (4), the final integro-differential form of EPRT:
2 2 laser
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It should be noted that eq. (6) indicates the wave passes with v(1 – µ2)1/2cosϕ,  
v(1 – µ2)1/2sinϕ, and vµ speeds in the x-, y-, and z-directions, respectively. This equation illus-
trates that the radiated intensity waves are attenuated due to scattering represented by the right-
hand side of the equations.

The heat fluxes at any point in x-, y-, and z-directions can be determined:
2 1
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and ωD is the Debye frequency, µ, ϕ, and ω are in the range of –1 ≤ µ ≤ 1, 0 ≤ ϕ ≤ 2π, and  
0 ≤ ω ≤ ωD. After evaluation of the intensity from numerical solution of eq. (6), the temperature 
of any point at every time can be calculated:
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where kB is the Boltzmann constant. Equation (8) uses the Bose-Einstein statistic as the equilib-
rium phonon distribution [14]. For a diamond thin slab the Debye temperature is θD =1860 K. The 
detail of calculation the Debye density of states at room temperature D(ω), was described in 
[15]. The physical constants of the diamond, 12C, are given in tab. 1 [1].

Table 1. Physical properties of diamond [15]

Parameter Value Unit

Lattice constant, a 3.57 [A°]

Specific heat, C 517.05 [Jkg–1K–1]

Mass density, ρ 3510 [kgm–3]

Debye temperature, θD 1860 [K]

Speed of sound, v 12288 [ms–1]

Constant A in eq. (15) 163.94 [–]

Stefan-Boltzmann constant, kb 50.47 [Wm–2K–4]

Number density, η 0.1541026 [m–3]

r in eq. (13) 1.78510–10 [m]

 in eq. (14) 1.58 [–]

Details of the numerical computation

The EPRT and Fourier equations are numerically solved using FORTRAN codes. The 
problem has been solved for transient 3-D heat conduction in a piece of diamond thin film with 
dimensions Lx = Ly = Lz = 1 µm, source heat flux q″s = 2.5⋅104 W/m2, source radius R = 0.2 µm, 
initial temperature T0 = 300 K, convection heat transfer coefficient h = 1.5 W/m2, and fluid tem-
perature T0 = 299 K . For presentation of results, the appropriate dimensionless parameters have 
been defined. The dimensionless temperature θ = (T – T0)/(q″s Lz/K), dimensionless heat flux  
q = q″/q″s, dimensionless x, y, and z lengths as ξ1 = x/Lx, ξ2 = y/Ly, and ξ3 = z/Lz have been used. 
Also, the dimensionless time has been defined as τ = (tv)/Lz. 

Method of finite differencing

For differentiation, the backward differencing in space has been used when the wave 
is traveling in the positive x-, y-, and z-directions and using forward differencing in the space 
when they are traveling in the negative directions. Therefore, the intensity distinguished by 
three superscript signs depending on the sign of µ and the range of angle, ϕ. For example: 

0 1 0 1
0 / 2 / 2

1 0 1 0

I I

I I
ω ω

ω ω

µ µ
φ φ

µ µ

+++ −++

++− −+−

 ≤ ≤ ≤ ≤ ≤ ≤ π π ≤ ≤ π 
− ≤ ≤ − ≤ ≤  

where the superscripts indicate the positive and negative directions of x, y, and z, respectively. 

Boundary and initial conditions

A brief description of the boundary conditions for the EPRT and Fourier equations is 
described in the following. For the EPRT, the boundary and initial conditions are defined based 
on the phonon intensity. For the front-back and left-right surfaces, there is the ambient tempera-
ture which causes the radiation of I 0ω(T0) toward the thin film on each frequency at any time:
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0
0( , , , , , ) ( , , , , , ) ( )x xI L y z t I L y z t I Tω ω ωθ φ θ φ−++ −−+= = (9)

But for the bottom surface there are two separate boundary conditions. For the nodes 
under laser heating:

2 1

laser
0 1 0

d d d
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q I
ω

ωµ ω µ φ
π

−

= ∫ ∫ ∫ (10)

and for the outer nodes at this surface, there is a convection heat transfer: 
2 1

0 1 0

[ ( , , 0) ] d d d
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π

∞

−
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The temperature of all points at t = 0 is T0. For the EPRT:
0

0( , , , , , 0) ( )zI x y L t I Tω ωθ φ = = (12)

Stability criteria

 For supplying the convergence, in all equations forward differencing in time was used 
to ensure the stability. The stability condition can be checked in the code:

2 21 cos 1 sin
1/

v vvt
z x y

µ φ µ φµ − − ∆ ≤ + +
 ∆ ∆ ∆ 

(13)

So, regarding the small size of the slab and the above criteria, the maximum of time 
step was calculated as Δt = 8.4E – 12 s.

Grid, spatial angles and frequency study

A structured computational grid is made for numerical solution of the EPRT. In a 3-D 
analysis, at each time step, the intensity matrix is dependent to six parameters. For assuring 
the independence of the results to the grid size, spatial angles and frequency, several numerical 
tests were made. In fig. 3, the dimensionless temperature belongs to the center point of the bot-

tom face was plotted for different grids. It has 
no significant changes with meshes greater than  
(21 × 21 × 11) nodes because the calculated er-
ror is less than 0.071. Therefore, for (x, y, and z) 
the grid were selected with (21 × 21 × 11) nodes 
for the following numerical solutions. Simi-
larly, for polar and azimuthal angles, µ and ϕ,  
(11 × 21) divisions were chosen. The depen-
dence of the results to frequency leads to (41) 
divisions for it.

Results and discussions

Validation

For validation of the generated EPRT 
code, a case for a large-scale slab, with Lz = 1 mm,  
has been solved with both the EPRT and Fou-
rier codes. Figure 4(a) shows the dimension-

Figure 3. Dimensionless temperature of center 
point for bottom face vs. node numbers
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less temperature for the centerline of the bottom face (along the x-axis). Figure 4(b) com-
pares the dimensionless temperature at the vertical centerline (along the z-axis). It is seen that 
there is a good agreement between the predictions of the EPRT and Fourier law in these fig-
ures. The maximum difference is seen in the bottom boundary where at dimensionless time  
τ = 1.5, the error between two solution is less than 2.5%. 

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

ζ
1(a) (b)

0.05 0.1 0.15 0.2 0.25

L = L = Lx y z = 1 mm L = L = Lx y z = 1 mm

Fourier = 1.0τ

EPRT = 1.0τ

Fourier = 1.0τ

EPRT = 1.0τ

Fourier = 1.5τ

EPRT = 1.5τ

θ

ζ
1

θ

 
Figure 4. Validation of the EPRT code with dimensionless temperature at fix laser heating;  
(a) bottom center line (b) vertical center line

Fix laser heating

Figure 5 shows the isotherm contours for the bottom surface of a thin slab with Lz = 1 mm 
at dimensionless time τ = 1.0 that obtained from the solution of the EPRT and Fourier equa-
tions. This figure shows that the predicted temperature by the Fourier equation is much higher 
than the ones belongs to the EPRT.
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Figure 5. Fix laser heating, bottom face isotherms at τ = 1.0

For a better illustration of the differences between the EPRT and Fourier prediction, 
the dimensionless temperature for the centerline nodes of the bottom face (along the x-axis) 
is plotted in fig. 6. By increasing the distance from the center of laser source, the differences 
between the results from both models are decreased. 



Dehkordi, E. K., et al.: Numerical Study of 3-D Microscale Heat Transfer ... 
3042	 THERMAL SCIENCE: Year 2019, Vol. 23, No. 5B, pp. 3035-3045

It should be noted that for the present 
problem the dimensions of the object are in the 
same order of mean free path and partially bal-
listic heat transfer is expected. In this condition 
the EPRT can capture the ballistic heat transfer 
while the Fourier equation has a parabolic pro-
file that propagates the energy suddenly to all 
nodes of the thin slab. 

To show the heat penetration into the thin 
slab, the isotherm contours of the vertical center 
face (in yz plane) are plotted in fig. 7.

The penetration of heat into the object by 
the Fourier law is much faster than EPRT. Al-
though the time is in the order of finite relaxation 
time and the sizes are in the order of mean free 
path, But the Fourier heat flux is assumed to go 
throw by an infinite speed. It is interesting that in 

the yz plane around the y = R (or the heat source radius) because of scattering mechanism in the 
isotherm contours of the EPRT, the curves are ragged and in fact at the end points of laser radius 
there is a jump in temperature profiles. But, the related curves for the Fourier are completely 
parabolic and without any jump.
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Figure 7. Fix laser heating, vertical center face isotherms at τ = 1.0

Figure 8 shows the dimensionless temperature of the vertical centerline (along the 
z-axis). As shown in small scales the difference between temperature profiles obtained from 
EPRT and Fourier law is significant and by increment the distance from the source it decreases. 
Figure 9 shows a 3-D view for the propagation of the heat flux in the thin slab. Comparison the 
contours in four levels illustrates that the reported dimensionless temperature by the Fourier 
law is too much greater than the one predicted by EPRT. 

Figure 10 shows the dimensionless heat flux for the vertical centerline. It is seen that 
the heat flux obtained from the Fourier law is higher than which from the EPRT. Note that the 
Fourier law uses a bulk thermal conductivity. At small scales the effective thermal conductivity 
is much less than the bulk thermal conductivity. Otherwise, in small time and scales, the pho-
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nons have not enough chance to interact with 
each other and transport the energy. 

Moving laser

In this section it is supposed to have a 
moving laser source with a constant veloci-
ty along the y axis, which is starts heating the 
center of the bottom face. In micro/nanoscale 
practical applications finding the correct tem-
perature of the bottom face in starting time are 
very important. The problem is solved with the 
same radius and power as described in the pre-
vious section and with Vlaser/v = 00.3.

Figure 11 shows the temperature con-
tours of the bottom face at τ = 0.5. It is seen 
that not only the Fourier predicts higher tem- Figure 8. Fix laser heating, dimensionless 

temperature of vertical centerline at τ = 1.0
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Figure 11. Moving laser heating, bottom face isotherms at τ = 1.0; (a) EPRT and (b) Fourier
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perature, but it also cannot capture the temperature jump in the boundary of laser radius. Using 
an infinite phonon speed by Fourier, as it is illustrated by Arpachi [16], leads to the heat waves 
propagates in the bottom face suddenly and much greater than the EPRT. It is obvious that for 
this case, the differences between the EPRT and Fourier predictions are more distinguishable in 
comparison of the fix laser case. Figure 12 compares the predicted heat flux of the EPRT and 
Fourier law in vertical center line. The Fourier lines are coincide with each other in the small 
time steps and they are not separated near the bottom face or in ξ3 ≤ 0.1. Also, on the other side 
of thin slab for ξ3 ≤ 0.7, the lines of predicted heat flux coincide with each other, completely. 
But the EPRT can distinguish the heat propagation in small time steps and the related lines are 
separated from each other in all small mentioned time steps. 

Conclusion

Laser heating is a common process in new micro/nanostructure productions and thin 
solid film industries. In many ultrafast laser heating processes, the time of the process is less 
than the relaxation time and the size of the heated thin film is less than the mean free paths. The 
present work focused on the heat conduction in microscale sizes and heating time less than the 
relaxation time. The 3-D integro-differential EPRT was numerically solved for the transient 
heat conduction of a thin solid slab under fix and moving laser heating. The obtained tempera-
ture profiles and heat fluxes were compared with the Fourier law predictions, too. In small sizes 
and time, the predicted temperature by the EPRT was very smaller than the Fourier in different 
points of the thin slab. The EPRT is more powerful in prediction of the heat fluxes at very small 
times than the Fourier equation. It was illustrated that the difference between the EPRT and 
Fourier’s predictions for moving laser heating is more significant than fix laser heating. The 
results of the unsteady 3-D present work can be applied for designing a system of heat treatment 
of thin solid films especially for asymmetric moving laser heating.
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