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We work on the analytical solution of the stochastic differential equations (SDE) 
via invariant approaches. In particularly, we focus on the stochastic Black-Der-
man Toy (BDT) interest rate model, among others. After we present corresponding 
(1+1) parabolic linear PDE for BDT-SDE, we use theoretical framework about 
the invariant approaches for the (1+1) linear PDE being done in the literature. We 
show that it is not possible to reduce BDT-PDE into the first and second Lie canon-
ical forms. On the other hand, we success to find transformations for reducing it to 
the third Lie canonical form. After that, we obtain analytical solution of BDT-PDE 
by using these transformations. Moreover, we conclude that it can be reduced to 
the fourth Lie canonical form but, to the best of our knowledge, its analytical solu-
tion in this form is hard to find yet.
Key words: heat equations, canonical Lie forms, invariant approaches,  

Black-Derman Toy model, analytical solution, stochastic model 

Introduction

Stochastic models are generally used by the investors in the financial markets. Most 
of these models do not have analytical solution so that they have to use its numerical approxi-
mation, which is obtained by performing the simulations or using any other numerical methods, 
in their analysis. In this article, we work on analytical solution of the stochastic models in the 
light of the invariant approaches and focus on BDT interest rate model, among others. While we 
explore the existence of its analytical solution by the Lie symmetry sense, we firstly show that it 
can not be written in terms of the first and second Lie canonical forms. Later, we are able to find 
transformations, which reduce it to the third Lie canonical form, and obtain analytical solution 
of BDT-PDE. We actually believe that its solution may help the practitioners who are willing to 
use this model in their works. Although they can quantify and analyze their investigation with 
this model using stochastic calculus tools, the analytical solution of it may help them to obtain 
relatively more sensitive analysis results which are the most important part for the investors 
throughout the decision process.

In the asset price process the interest rate is the one of the crucial parameter and it can 
be changed randomly in the real market. Therefore, risk takers want to minimize their risk using 
the most suitable stochastic model for their problem and obtain realistic solutions with respect 
to its analytic or numerical solution. As we mentioned before the stochastic models, which are 
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described with SDE or system of differential equations, do not have analytic solution in gen-
eral. In this case, the usage of the invariant approaches based on the Lie symmetry analysis is 
increased by the most of the scientist in the last decades. For instance, Lie symmetry analysis of 
the Merton-Black Scholes [1] model is one of the first work is done in the literature [2]. More-
over, Bakkaloglu et al. [3] examine the invariant approach to optimal investment consumption 
problem in. Furthermore, Pooe et al. in [4] derive the fundamental solutions to the zero-coupon 
bond pricing equations and Mahomed et al. [5] study invariant approaches to equations of fi-
nance in. On the other hand, Izgi and Bakkaloglu˙ [6, 7] investigate the deterministic solutions 
of the some stochastic differential equations. They work on the Ho-Lee stochastic interest rate 
model and obtain the fundamental solution of this model in terms of the heat equation solution 
and they also show some important results for the calibration of the model parameters via sim-
ulations [7].

Black-Derman Toy stochastic interest rate model

The BDT model is one of the first no-arbitrage interest rate model which was intro-
duced by Black, Derman and Toy [8]. It is a special case of the more general Black-Karasinski 
model [9]. It is considerably consistent with the term structure of interest rates which is ob-
served in the financial market. Bond pricing, option pricing and modeling future interest rate 
are some of the applications area of this model in the literature.

Its discrete-time version, which is quite famous, can be constructed in the form of a 
binomial tree. On the other hand, it also has continuous-time version which represents some 
theoretical difficulties. We work on its continuous-time version to find analytic solution of BDT 
model using invariant criteria to overcome these difficulties.

Its SDE, where the continuous-time version of BDT interest rate model follows a 
normal process:

	 [ ]( )  ( ) ( )   ( )σ= +dr t r t d t dt dW t 	 (1)

Here, the drift term d(t) is a deterministic function of time which is the main differ-
ences between BDT and Black Scholes models. In the financial applications with such model, 
whose drift term is deterministic function, drift term should be determined carefully otherwise 
the interest rate can be reached to the negative values. The constant diffusion term, σ, represents 
volatility parameter of interest rate process while r(t) and W(t) represent the interest rate and 
1-D standard Brownian motion, respectively.

Moreover, BDT derived this no-arbitrage interest rate model (see [8]) with respect to 
the complete market assumptions (i. e. no taxes, no transaction costs, no arbitrage opportunity, 
etc.) so that the zero coupon price u(x,t) in the BDT model satisfies the scalar linear (1 + 1) 
parabolic PDE:

	 2 21 ( ) ,   ( , ) 1
2
σ=− − + =t xx xu x u d t xu xu u x T 	 (2)

This equation is referred as linear (1 + 1) parabolic BDT-PDE.

Review of theoretical framework:  
invariant criteria for linear (1 + 1) parabolic PDE

In this section, we briefly introduce the main results of Mahomed on the invariant 
characterization of scalar linear (1 + 1) parabolic PDE (for more details see [10]).
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The general representation of the scalar linear (1+1) parabolic PDE of one time and 
one space variable is:

	 ( ) ( ) ( ) ( )
2

2, , , ,  3∂ ∂ ∂
= + +

∂ ∂ ∂
u u ua t x b t x c t x u
t x x

	 (3)

where the coefficients a, b, and c are the continuous functions of t and x.
Lie [11] showed the relationship between the scalar linear parabolic PDE (3) and four 

Lie canonical forms. In this point, the following theorems (see [10]) which provide invariant 
criteria for the reduction of scalar linear (1+1) parabolic PDE (3) into different Lie canonical 
forms, take important role.

Theorem 1. [10] The linear parabolic eq. (3) is reducible to the classical heat PDE (or 
the first Lie canonical form)

	
2

2 ∂ ∂
=

∂ ∂
u u
t x

via the transformations:

	 ( )φ=t t

	
1/21 ( , ) d ( )x a t x x tφ β− = ± + ∫ 

	 [ ]
¨ 2

1/4
1/2

( , ) 1( ) ( , )   exp d
2 ( , ) 8 ( , )

φυ
φ

−
    = − −    
∫ ∫



b t x dxu t a t x u x
a t x a t x

	 1/2 1/21/2

1 1 d 1 dd
2 ( , ) ( , ) 2 ( , )

β
φ

∂  − ± ∂  
∫ ∫ ∫





x xx
a t x t a t x a t x

	 (4)

where φ and  a have the same sign, and , φ β , and υ  satisfy:

	
2

1/2 2 1/2

( , ) 1 1 dd d
2 ( , ) 2 ( , ) ( , )

φ ∂ ∂  = + − + ∂ ∂  
∫ ∫ ∫

b t x xc J x x
t a t x a t x t a t x

	
2

1/2 1/2

d d( ) ( ) ( )
( , ) ( , )

   + + +      
∫ ∫

x xf t g t h t
a t x a t x

	 (5)

with J is:

	
2 23

2 2 4 16 2 4
= − + + − − −x x xx x tb ba a a a bJ c

a a a a
	 (6)

and

	
2

2

1 ( ) 1( )
16 8( )

φ φ
φ φ

 
= −  

 

 

 

t

f t

	 ( ) 1/2 1/2

1 1
( ) (2 )8 t

g t
φ φ

φ β β
φ

 
= ± ±  

 

 

  

	 ( )
21 1 ( )

4 4
βφ ϑ

ϑφ φ
= + +

  

 

h t 	 (7)
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The functions f, g, and h are constrained by the relation defined in eq. (5) (see [10] 
and references therein).

Theorem 2. [10] The following are equivalent statements:
(a)	the scalar linear (1+1) parabolic PDE (3) has six non-trivial point symmetries in addition to 

the infinite number of superposition symmetries,
(b)	the coefficients of parabolic eq. (3) satisfies the invariant equation:

	 2 2 2 , 0+ − =x x xL M N 	 (8)
where

	 2 1, ,
2

     = = ∂ = ∂          
x t tx

x

bL a aJ M a a N a
a a

	 (9)

and J is given by eq. (6),
(c)	the linear parabolic eq. (3) is reducible to the classical heat PDE 2 2 / /∂ ∂ = ∂ ∂u t u x  via the 

transformations (4) for which φ, β, and ν are constructed from eq. (7) with the functions f, g, 
and h are constrained by the relation:

	 ( )
2

21 1 d d d d d ( ) ( ) 0
2 2

   
+ ∂ − ∂ + + + =   

   ∫ ∫∫ ∫ ∫t t
b x x xJ x x f t g t h t
a a a a a

	 (10)

Mahomed [10] stated necessary and sufficient conditions for reduction (1+1) parabol-
ic PDE (3) into the second, third or fourth Lie canonical form by his following theorems:

Theorem 3. [10] If the scalar linear (1+1) parabolic PDE (3) does not satisfy condition 
(8) then it can be reduced to the second Lie canonical form:

	
2

2 2 , 0u u A A
t x x

∂ ∂
= + ≠

∂ ∂
	

is a constant when the following necessary and sufficient conditions hold:

	 d d20 20 10 10 5      + − + − +   ∫ ∫x x x x x
x x

x xL M N a M a N
a a

	

2

d d10
 

      + +       
 

+
∫∫x x

x x x

x xa L a a L
a a

	

2 2

d 1 d 0
2

   
         + − =            

   
∫ ∫x x

x xx x

x xa a M a a N
a a

	 (11)

where L, M, N, and J are defined in eqs. (9) and (6).
Theorem 4. [10] If the scalar linear (1+1) parabolic eq. (3) does not satisfy condition 

(8) in Theorems 2 and condition (11) in Theorem 3 then it is equivalent to the third Lie canonical 
form:

	 ( )
2

2

∂ ∂
= +

∂ ∂
u u c x u
t x

	

if and only if the coefficients of parabolic eq. (3) satisfy the invariant criterion:
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2

2

1 1 dd d 0
2 2

  ∂ ∂ ∂  + − =
 ∂ ∂ ∂   

∫ ∫ ∫
b xJ x x

t t a ta a
	 (12)

via the transformations:

	 1 1, 1,  const.= + = ± =t t a a 

	 [ ] 0.5( , ) d−= ±∫x a t x x

	 0.25
0 0.5 0.5

( , ) 1 1 d( , )  exp d d
2 ( , ) 2 ( , ) ( , )

υ −   = − ∂ 
  

 
  

∫ ∫ ∫t
b t x xu a t x u x x
a t x a t x a t x

	 (13)

here 0υ  is a constant. If 0>a , then 1= , otherwise 1= − . The c  in the transformed PDE 
should satisfy:

	
2

2

1 1 dd d
2 2

ε
 ∂ ∂ = + −
 ∂ ∂ 

∫ ∫ ∫
b xc J x x

t a ta a
	

Theorem 5. [10] If the scalar linear (1+1) parabolic eq. (3) does not satisfy the condi-
tions of Theorem 2-4 then it is reducible to the fourth Lie canonical form:

	 ( )
2

2  ,∂ ∂
= +

∂ ∂
u u c x t u
t x

	 (14)

Analytic solution of BDT linear (1 + 1) parabolic PDE

In this section, we present invariant approach to analytic solution of the BDT model. 
We investigate the possible transformations of BDT-PDE in eq. (2) for the related Lie canonical 
forms under the consideration of the theorems are given in section Review of theoretical frame-
work: invariant criteria for linear (1 + 1) parabolic PDE.

Transformation: BDT-PDE to 1st Lie canonical form

The coefficients of the scalar linear (1+1) parabolic BDT-PDE (2) are as follows:

	 2 21( , )
2
σ= −a t x x ,

	 ( , ) ( ) ,= −b t x d t x 	 (15)

	 ( ), =c t x x 	

where the ( , ),  ( , ) a t x b x t , and ( , )c x t  are defined in eq. (3). Now, we need to check whether 
BDT-PDE satisfies Theorem 2 conditions or not. First, we evaluate J as following which is 
given by eq. (6):

	
2 2

2

1 1 ( )( )
2 2 8

σ
σ

= + +
d tJ x d t 	 (16)

We can easily obtain 2(1/2)σ=L x using this J in eq. (9). Moreover, we see that M and 
N are 0 when we evaluate them by using eq. (9) with respect to the coefficients in eq. (15). If we 
substitute these values in the invariant condition (8) in Theorem 2, then 2 2 2 0+ − =x x xL M N  
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reduces to the 2 0σ = . This is not the case which we are interested in since the BDT model’s 
SDE will become ODE for 0σ = , and also the BDT-PDE will not be parabolic with this value. 
As a result, σ can not take zero value and Theorem 2 conditions failed to hold. Furthermore, 
BDT-PDE can not be transformed to the 1st Lie canonical form which is identical to the classical 
heat equation.

Transformation: BDT-PDE to 2nd Lie canonical form

The BDT-PDE can be reduce to 2nd Lie canonical form if and only if the necessary and 
sufficient conditions in Theorem 3 hold. These conditions reduce to the following case:

	

2

d d20 10   0
 

      + + =       
 

∫ ∫x x x
x x x

x xL a L a a L
a a

	 (17)

since M and N are 0. If we evaluate each term of this equation and substitute them into of it, we 
will obtain the equivalent equation:

	
23 4

2
1 1

1 2 220 10 ln ln 0
2 42 2

σ σσ
σ σ

      + + + + =               
x c x c 	 (18)

After some simplifications and choosing c1 = 0 for the simplicity then we have:

	 ( )22 2 220  1 0 ln   ln 0, 0σ σ σ σ+ + = ≠x x

It is nothing more than:

	 ( )2ln 10ln 20 0+ + =x x 	 (19)

This equation holds only for two x values (i. e. 2 5 5
1 e  −=x  and 2 5 5

2 e− −=x ). For this 
reason, BDT-PDE can not be reduced almost to the 2nd Lie canonical form.

Transformation: BDT-PDE to 3rd Lie canonical form

The linear parabolic (1+1) PDE (2) can be transformed to the 3rd Lie canonical form 
since the BDT-PDE (2) does not satisfy condition (8) in Theorems 2 and condition (11) in The-
orem 3. Then, the transformations from BDT-PDE to the 3rd Lie canonical form can be found 
if and only if the statements of the Theorem 4 hold. Now, we are in the position to investigate 
the validation of Theorem 4 for eq. (2). If we evaluate the necessary terms in eq. (12) then the 
following equation appears:

	 2 2

ln ( ) 1( ) ( ) 0
2σ σ

 + − = ′′ ′
 

x d td t d t 	 (20)

It is clear that eq. (20) holds if and only if ( ) λ=d t  where the λ is a constant. In case, 
we can find the transformations from linear parabolic (1+1) PDE (2) to 3rd Lie canonical form

	 ( )
2

2

∂ ∂
= +

∂ ∂
u u c x u
t x

 

by using eq. (13) in Theorem 4. After some calculations we obtain the following transforma-
tions in the barred co-ordinates:
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	 1 1, 1,  const.= − + = − =t t a a

	 2
2 ln
σ

= ± +x x c 	 (21)

	
0.25

2 2
0 32

1  exp ln
2

λυ σ
σ

−
 = − + 
 

u x u x c 	

where

	 ( )
2

2
2

1 1 1
2 8 2

λλ σ
σ

= − + +c x x 	 (22)

We are very close to find the analytic solution of BDT-PDE with this transformations 
which represent the relationship of the solutions between the barred co-ordinate u  to the Car-
tesian co-ordinate u. Therefore, we need to move one step further to reach the result. Then, we 
solve the ( )  = +t xxu u c x u  via methods of separation of variables (see Appendix for the details 
of the calculations) and obtain the following solution u  in the barred co-ordinate:

	 [ ]0 1 1 2( ) e) ( −= + ktu c X x c X x 	 (23)

If we substitute eq. (23) in the eq. (21) then we obtain analytic solution of BDT-PDE:

	 [ ]
0.25

1 2 2
0 3 0 1 1 22

1( , ) exp ln e( ) (
2

)λυ σ
σ

− −  = − − + +    
ktu x t x x c c X x c X x 	 (24)

where

	
2 3

2 3 4 5 6
1

1 1 3 41
2! 3! 4! 5! 6

( )
!

µ µ µ µ+ −
= − − + + + +X x x x x x x

	
2

3 4 5 6
2

2 6
3! 4! 5

)
!

(
6!

µ µ µ
= − − + + +X x x x x x x

and 

	 1  = − +t t a  and 2
2 ln
σ

= ± +x x c

Transformation: BDT-PDE to 4th Lie canonical form

If ( )  λ≠d t  (constant) in eq. (2) then it does not satisfy the conditions of Theorem 2-4 
so that it is reducible to the fourth Lie canonical form: 

	 ( )
2

2 ,∂ ∂
= +

∂ ∂
u u c x t u
t x

with respect to Theorem 5. We investigate solution of the following equation:

	 2 2

ln ( ) 1( ) ( ) 0
2σ σ

 + − ≠ ′′ ′
 

x d td t d t 	 (25)

For simplicity of calculation, we can choose d(t) = t without loss of generality then 
eq. (25) reduce to:
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	 2

1 0
2σ

− ≠
t 	 (26)

This is also consistent with our assumption for d(t). The ( ),c x t u  in the 4th Lie ca-
nonical form can be obtained:

	 ( )
2

2
2 2

1 1 ln,
2 2 8

σ
σ σ

= − + + +
t xc x t x t 	

by using the formula which is defined in Theorem 4. We then have:

	
2 2

2
2 2 2

1 1 ln
2 2 8

σ
σ σ

 ∂ ∂
= + − + + + 

∂ ∂  
u u t xx t u
t x

If we apply methods of separation of variables then we obtain:

	
2

2
2

1 1
2 2 8

σ
σ

+ − + −
′

=
T tt k
T

	 (27)

	 2

ln 0
σ

 + + + =′
 

′ 
xX x k 	 (28)

where the k is a separation of variable constant. The eq. (27) can be easily integrated but the 
eq. (28) can not be integrated as much as easy of other. It is really hard to obtain the analytical 
solution of eq. (28). On the other hand, its numerical solution may be possible to obtain by 
using some package programs (i. e. MATHEMATICA, etc.) As a result of the fact that, our aim 
in this paper is finding the analytical solution of BDT-PDE for the corresponding Lie canonical 
form, for this purpose we present that it can be reduced to the 4th Lie canonical form but it is not 
possible to obtain analytical solution of it in this form, easily.

Conclusions

In the stochastic world, it is important to talk about analytic solution of the SDE being 
considered which is generally hard to obtain. For this purpose, we first convert BDT stochastic 
interest rate model into the parabolic PDE using the stochastic calculus tools. Then, we present 
some conditions and show how to convert it into the different Lie canonical forms under the 
invariant approaches.

We exhibit that it is not possible to obtain the transformations between BDT-PDE and 
first Lie canonical form which is classical heat equation. Therefore, we investigate the possibil-
ity of obtaining the transformations for the second Lie canonical form but we present that it can 
not be reduced to the second Lie canonical form in general except to the some special x values. 
Moreover, we achieve to get the transformations for reduction to the third Lie canonical form 
and we obtain analytical solution of BDT-PDE under the light of the theorems. After that, under 
the restriction of the drift term ( ) 0≠d t , we prove that BDT-PDE can also be reduced to the 
fourth Lie canonical form theoretically. We conclude that its analytical solution is not possible 
to obtain easily. For this complexity, it would be desirable to obtain analytical solution of the 
BDT-PDE into the fourth Lie canonical form but we have not been able to do this and it is going 
to be a research subject of the another paper study.

Appendix

The 3rd Lie canonical form:



Izgi, B., et al.: Invariant Approaches for the Analytic Solution of the Stochastic ... 
THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S265-S275	 S273

	 ( )= +t xxu u c x u  	 (29)
can be solved analytically via methods of separation of variables as following.

Let the solution  U  be defined as XT then  ,′=tU X T   ′=xU X T , and ′= ′xxU X T . If 
we substitute these in eq. (29) then we get:

	 ( )+′ ′= ′X T X T c x X T

	 ( )' ′ +
=

′X c x XT
T X

	 ( ) , constant= + = − =
′ ′′T X c x k k

T X
Now, we have two equations which are need to be solved:

	 0′ + =T kT  	 (30)
	 ( ) 0X c x k+ + =  ′′ 	 (31)

The solution of the eq. in (30) is e−= ktT  which can be obtained easily. After that if we 
substitute

	 ( )
2

2
2

1 1 1
2 8 2

λλ σ
σ

= − + +c x x

which is obtained in section Analytic solution of Black-Derman Toy linear (1 + 1) parabolic 
PDE by using Theorem 4, into eq. (31) then we have:

	
2

2
2

1 1 1 0
2 8 2

λλ σ
σ

 
+ − + + + =′′  
 

X x k X

Let as define:

	
2

2
2

1 1 1
2 8 2

λµ λ σ
σ

= − + +

and rewrite previous equation in terms of it:

	 ( ) 0µ+ + =′′X x X 	 (32)
We can obtain solution of eq. (32) via power series approximation [12], for this pur-

pose we define 0
∞
== ∑ n

nnX c x . We also generate 1
1'  ∞ −
== ∑ n

nnX nc x , and ( ) 2
2' 1∞ −

== −∑ n
nnX n n c x  

by taking derivatives of X with respect to x . Now, if we substitute these in eq. (32) it becomes:

	 ( )( ) 2 1
0 1 0

2 1 0µ
∞ ∞ ∞

+ −
= = =

+ + + + =∑ ∑ ∑n n n
n n n

n n n

n n c x c x c x 	

After some simplifications on this equation, we have:

	 ( )( )2 0 2 1
0

2 2 1 0n
n n n

n

c c n n c c c xµ µ
∞

+ −
=

+ + + + + + =  ∑ 	 (33)

This equation holds if and only if 2 02 0µ+ =c c  and 2 1( 2)( 1) 0µ+ −+ + + + =n n nn n c c c  
where n = 1,2,3,... The latter equation can be written:
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	 1
2 , 1,2,3,

( 1)( 2)
µ−

+

+
= − = …

+ +
n n

n
c cc n

n n
Now, we are able to determine all coefficients nc  is in terms of 0c  and 1  c  for 3≥n . 

First, we assume that 0 0≠c  and 1 0=c  for simplicity. In this case, solutions are defined in terms 
of 0c . In second case, if we assume that 0 0=c  and 1 0≠c  then the solutions can be defined as a 
function of 1c .

The coefficients in the first case when 0 0 ≠c  and 1 0=c  are:

	 2 02!
µ

= −c c ,  3 03!
µ

= −c c ,  
2

4 04!
µ

=c c ,  5 0
1 3

5!
µ+

=c c ,  
3

6 0
4

6!
µ −

=c c ,   

The coefficients in the second case when 0 0 =c  and 1 0 ≠c  are:

	 2 0 0
2!
µ

= − =c ,  3 13!
µ

= −c c ,  4 1
2
4!

= −c c ,  
2

5 15!
µ

=c c ,  6 1
6
6!
µ

=c c , 

The general solution is:

	 ( ) ( ) ( )0 1 1 2=X x c X x c X x 	 (34)
where

	 ( )
2 3

2 3 4 5 6
1

1 1 3 4 1
2! 3! 4! 5! 6!
µ µ µ µ+ −

= − − + + + +X x x x x x x

	 ( )
2

3 4 5 6
2

2 6
3! 4! 5! 6!
µ µ µ

= − − + + +X x x x x x x

The solution of the 3rd Lie canonical form was defined as ( , ) ( ) ( )=U x t X x T t , if we 
replace ( ) X x  and ( )T t  with 0 1 1 2( ) ) (c X x c X x  and e−kt , respectively, then we have the solution:

	 ( ) ( ) ( )0 1 1 2, e−=   
ktU x t c X x c X x 	 (35)
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