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The study depicts the variations in the hydromagnetics flow of a Careau fluid in a 
semi permeable curved channel with convective boundary condition. Furthermore, 
Rosseland approximation is also considered to analyze the non-linear thermal ra-
diation effects. Curvilinear co-ordinates system has been adopted for the mathe-
matical modeling of the flow equations. The attained set of governing equation are 
then converted into non-linear dimensionless differential equations, by making use 
of similarity variables which are later treated by shooting method. In addition, the 
Newton‘s Raphson method is also incepted to improve the accuracy of the obtained 
numerical result. The velocity field and temperature distributions are affected by 
various involved parameter which are presented in graphs and in table form. It is 
noticed that the velocity profiles are influenced by the change in the Weissenberg 
number
Key words: semi porous curved channel, Carreau fluid,  

convective boundary condition, non-linear thermal radiation

Introduction

Flow analysis in a semi-porous or porous channel or tubes obtained considerable at-
tention in the last few years because of its large number of utilization in the arena of biomedical 
and mechanical engineering, which consists of flow in blood oxygenators, manufacturing of 
porous or semi-porous pipes, flow of blood in capillaries, design of filter and dialysis of blood 
in synthetic kidney. The analysis of flow behavior in the channel was initiated by Berman [1], 
and gave the exact solution of the flow equations. Analysis of flow done by [1] was extended in 
diverse directions by several researchers to discuss the varied aspects of flow for both viscous 
and non-Newtonian fluids. For more details, the interested readers are directed to the articles 
[2-7] and many references therein.

The analysis of magnetic field along with the thermal radiation in the heat exchange 
flow problems are crucial in process involving high temperature for example storage of thermal 
energy, turbine, nuclear power plant, solar power technology, electrical power era, space vehi-
cle re-entry and many others. In the couple of papers Pantokratoras and Fang [8, 9] investigate 
the non-linear thermal radiation effects on the viscous fluid both for Sakiadis and Blasius flow 
respectively. The examination of the convective heat transfer flow on the stretching wall with 
non-linear thermal radiation was done by Cartel [10]. Kumar et al. [11] discussed the effects 
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of non-linear thermal radiation on Williamson fluid on a stretching surface. Mushtaq et al. [12] 
analyzed the impacts of non-linear thermal radiation on the flow of nanofluid. A glance at the 
recently published literature shows that various aspects of convective heat transfer flow with 
magnetic field and thermal radiation have been investigated by several researchers [13-23]. 

The investigation of flow characteristics of non-Newtonian fluids has acquired sig-
nificant importance due to its extensive scope of utilization in chemical engineering and in-
dustrialized process, for example molten of plastics, properties of paint and blood. In afore-
said problems, the fluid’s rheology is intensely complicated, since at any point during the flow 
motion the apparent viscosity of the fluid developed into a relation between a shear stress and 
the local shear rate, and several flow models for non-Newtonian fluid have been formulated to 
characterize such flow behaviors. A good example of such flow models are the Carreau model 
[24], power law model, Maxwell fluid model for pseudoplastic and dilatant fluid, Casson and 
Herschel-Bulkley model for viscoelastic fluid [25]. The impacts of transferring of heat in MHD 
flow of a viscoelastic fluid through a channel by considering oscillatory starching surface was 
examined by Missra et al. [26]. Hsiao [27] investigated the influence of magnetic and viscous 
dissipation effects on a micropolar nanofluid flow on a stretching sheet. Hayat et al. [28] ex-
amined the impacts of heat exchange processes on a hydromantic flow of an upper convected 
Maxwell fluid through a channel in a permeable medium. The study of heat exchange in a hy-
dromagnetic flow of a viscoelastic fluid past a channel was done by Raftari and Vajravelu [29]. 
They obtained the analytic solution of the problem by using Homotopy perturbation technique. 
Abbas et al. [30] examined the hydrodynamic flow of non-Newtonian fluid through a semi 
permeable channel. Recently, Masood et al. [31] investigated the impacts of magnetic field and 
non-linear thermal radiation on Carreau fluid.

On the other side, the review of literature points out that the research and information 
is scarce for the flow through a curved channel. The study of flow in a camped curved channel 
has gotten a great deal of attention because of its so many utilization in an arena of biological 
and engineering processes. Khuri [32] studied the Stoke’s flow through the curved channel. Fu 
et al. [33] examined the impacts of forced convection on the flow of a reciprocating curve chan-
nel embedding in a permeable medium. Naveed et al. [34] examined the impacts of porosity 
and radiation on the flow of viscous fluid through a semi permeable curved shape channel. The 
impacts of Hall current with non-linear radiation on the flow of viscous fluid through a curved 
shape channel was analyzed by Abbas et al. [35]. Sajid et al. [36] analyzed the impacts of mag-
netic field and Joule heating on a nanofluid flow past a semi permeable curved shape channel.

The objective of the existing study is to examine the impacts of applied external mag-
netic field with non-linear radiative heat exchange in a Carreau fluid flowing in a semi per-
meable curved channel in which lower wall of the channel is convectively heated. Numerical 
solutions of the resulting equations are obtained by employing shooting method and impacts of 

diverse parameters are illustrated through graphs 
and table.

Presentation of the problem

Consider 2-D and incompressible bound-
ary-layer hydromagnetic flow of a Carreau fluid 
through a semi permeable curved channel separat-
ed by a distance, H , curled in a round circle of 
radius, 1R , fig.1. Moreover, the lower surface of 
the channel is rigid, whilst the upper wall is perme-Figure 1. Physical model and co-ordinate 

system
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able on which a non-Newtonian fluid is injected. It is assumed that the temperature of the low-
er wall is 1T  which is kept fixed by employing convective boundary condition and the tempera-
ture of the upper wall is assumed as 0T  with 1 0T T> . In addition, a uniform magnetic field of 
intensity 0B  is incorporated in r -direction. By these assumptions, continuity, momentum and 
energy equations for the flow of Carreau fluid are:
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In previous equations w and z denote the velocity components along the r and x-direc-
tions, respectively, and *

1, , , , , , ,rq T n pλ α ν  and ρ  are the relaxation time, thermal diffusivity, 
radiative heat flux, kinematic viscosity, temperature, power law index, pressure, and density of 
the fluid, respectively.

The suitable boundary conditions to present the flow and heat transfer are [34]:
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where sv < 0 is for injection velocity and sv > 0 represents the suction velocity, 0T  denote the 
temperature of the upper curved wall, fh  denote the convective heat transfer coefficient, and k  
denote the thermal conductivity of the fluid. 

The radiative heat flux term is defined by Rosseland approximation as [37]:
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where k ∗ and σ ∗ are the mean absorption coefficient and Stefan-Boltzman constant, respec-
tively.
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The dimensionless temperature field is given [35]:

 ( ) ( )0
0 0

1
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and 1 0w T Tθ =  indicates the temperature parameter.
Invoking eqs. (6) and (7) in energy eq. (4), one can obtain:
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where 316 3Rd T k kσ ∗ ∗
∞= is termed as a radiation parameter.

Similar solutions of the governing equations are obtained by employing the dimen-
sionless transformations [34]:
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Introducing eq. (9), continuity eq. (1) is satisfied and eqs. (2), (3), and (8) yields:
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where, 1 /K R H= , Pr /pc kµ= , 2
0M /B H Uσ ρ= , 2 2 2 2 4

1We /U s Hλ= , and Re /= HU ν  are the 
radius of curvature, Prandtl number, magnetic or Hartmann number, local Weissenberg number, 
Reynolds number, respectively.

Elimination of pressure term from the eqs. (10) and (11), one can obtain:
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Subjec to boundary conditions:
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The physical quantities of interests are the coefficient of skin-friction and the rate of 
heat transfer along the surface which are:
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In previoua equation wq  and rxτ  are the heat flux and shear stress at the surface in the 
x-directions, which are given:
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Introducing eqs. (9) and (16), one can write eq. (15):
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Numerical solution

The non-linear differential eqs. (12) and (13) with boundary conditions (14) are solved 
numerically by employing shooting method in the following way:
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along with boundary conditions:
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 ( ) ( ) ( ) ( )10 0, 0 1, 0 1 0 0,f y g β θ= = + − =    (20)

For simplicity of the flow equations we take ξ ξ= . Integrating eqs. (18) and (19) as 
an initial value problem we need the values of 2 (0)y  i. e. (0)f ′′ , 3 (0)y  i. e. (0)f ′′′  and (0)θ ′  i. e. 

(0),g  but we do not have such values. The initial presume values (0)f ′′ , (0)f ′′′ , and (0)g  are 
chosen and then integrated. The determined values of (1)f ′  and (1)θ  are equated with the given 
boundary conditions (1) 1f = , (1) 0f ′ = , and (1) 0θ = , and for better solution, the values of 

(0)f ′′ , (0)f ′′′ , and (0)g are refined and adjusted by Newton Raphson’s method. The step size 
has chosen as 0.01.η∆ =  This process is repeated till the obtained results are converged inside 
the accuracy of 510−  level.

Result and discussions

To highlight the impacts of different pertinent parameters on the fluid velocity, Nusselt 
number, skin friction coefficient, and temperature distribution, the graphical and tabular result 
are discussed here.

Figure 2 is displayed to see the analysis of velocity field, '( )f ξ , through the dimension-
less radius of curvature, 1K . It is observed that the velocity field near the permeable surface decays 
for larger values of 1,K however after 4ξ =  it starts increasing. Figure 3 demonstrates the varia-
tion of '( )f ξ  with magnetic parameter, M. It can be seen from this figure that the fluid velocity 
decays gradually for higher values of magnetic parameter, this behavior happens as a matter of 
fact that the magnetic field behaves as opposing force to the fluid motion. Figure 4 illustrates the 
influence of the Weissenburg number on '( )f ξ . It can be seen from the this figure that fluid veloc-
ity is increases for larger values of Weissenburg number. Figure 5 illustrates the variation on '( )f ξ  
with several values of Reynolds number. It is noticed from this figure that velocity field is a de-
creasing function of Reynolds number. Figure 6 depicts the influence of power law index n, on 
the velocity field '( )f ξ , which exhibits that the fluid velocity is decreases for larger values of n.

( )f ξ′

ξ

( )f ξ′

ξ

K1 = 2.0, 5.0, 10, 20 M = 0.5, 1.5, 2.5, 3.5

Figure 2. Variation in velocity profile '( )f ξ  for 
1K  when = = =1.5, M 1.5, We 0.2n , and =Re 3.0

Figure 3. Variation in velocity profile '( )f ξ  for  
M when = = =1 5, 1.5, We 0.5K n , and =Re 5

The analysis in pressure distribution ( )P ξ  for diverge value of magnetic parameter 
and Reynolds number is displayed in fig. 7. The pressure field is decreased for higher values of 
Reynolds number, on the other hand, it enhances for higher values of magnetic parameter. Vari-
ation of pressure distribution ( )P ξ  with Weand 1K  is illustrated in fig. 8. Pressure distribution 
decays gradually when the values of 1K  is increased, whilst, the pressure enhanced for larger 
values of Weissenburg number.
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Description of the Weissenberg number 
on the temperature distribution ( )θ ξ  is illus-
trated in fig. 9. One can observed that tem-
perature and also the thermal boundary-layer 
thickness decreases for larger values of Weis-
senberg number. Analysis of radiation param-
eter Rd  and Reynolds number on ( )θ ξ is 
displayed in fig. 10. Decay in temperature 
distribution is observed for high values of 
Rd  and Reynolds number. Impacts of Prandtl 
number and two values of convective param-
eter β  on ( )θ ξ  is illustrated in fig 11. Higher 
values of Prandtl number and β  is responsi-

ble for decay in the temperature field and also decreases the thermal boundary-layer thickness. 
Influence of temperature parameter wθ  on the ( )θ ξ  is presented in fig 12. High values of wθ  
results in the enhancement of temperature field an in thermal boundary-layer thickness. One can 
also observed from this figure that for lower values of wθ , non-linear thermal Rosseland approx-
imation tends to behave as a Rosseland approximation but for larger value of wθ  , the tempera-
ture field turned to broader and S-shaped as investigate by Pantokratoras and Fang [8].

The analysis in skin friction coefficient 1 2Rex fC  for various value of 1K  vs. Weissen-
burg number is illustrated in fig. 13. It is evident from this figure that the magnitude of 1 2Rex fC  

Figure 4. Variation in velocity profile '( )f ξ  for 
We when = = =1 5, 1.5, M 0.5K n , and =Re 4

Figure 5. Variation in velocity profile '( )f ξ  for 
Re when = = =1 2, 1.5, M 0.8K n , and We = 0.4

( )f ξ′

ξ

( )f ξ′

ξ

We = 0.1, 0.6, 1.5, 3.5 Re = 1, 5.0, 10, 20

Figure 6. Variation in velocity profile '( )f ξ  for n 
when = = =1 2, We 1.0, M 0.7K , and =Re 4

( )f ξ′

ξ

n = 1.0
n = 1.4
n = 2.0

Figure 7. Variation in pressure profile ( )P ξ  for M 
and Re when = =2.0, We 0.2,n  and =1 2K

Figure 8. Variation in pressure profile ( )P ξ  for 
We and 1K when = =2.0, M 0.8,n  and =Re 5.0

ξ ξ

( )P ξ
( )P ξ

K1 = 8.0, 3.0, 2.0Re = 10, 7.0, 5.0, 4.0

M = 1.2
M = 0.8

We = 0.1
We = 0.2
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enhances for higher values of Weissenburg number and 1K . Figure 14 shows the analysis of 
1 2Rex fC  for various values of Reynolds number vs. magnetic parameter. The absolute values of 
1 2Rex fC  enhances for lager values of magnetic parameter and Reynolds number.

Figure 9. Variation in temperature profile ( )θ ξ  for 
We when K1 = 5, M = 1.0, Re = 4, β = 0.3,  
Pr = 10, n = 2, Rd = 1, and θw = 7

Figure 10. Variation in temperature profile ( )θ ξ  
for Re and Rd when = = =1 2, We 1.0, M 1.0,K  

= = =Pr 10, 2, 0.3n β , and θw = 7

ξ ξ

( )θ ξ( )θ ξ
Re = 2.0, 3.0, 6.0, 10

We = 2.0, 0.8, 0.4, 0.0

Rd = 0.6
Rd = 0.3

Figure 11. Variation in temperature profile ( )θ ξ  
for Pr and β when K1 = 2, We = 1.0, M = 1.0,  
Re = 5, n = 2, Rd = 0.3, and θw = 7

Figure 12. Variation in temperature profile ( )θ ξ  
for θw when K1 = 5, We = M = Rd = 1.0, n = 2,  
Pr = 10, β = 0.3, and We = 1

ξ ξ

( )θ ξ
( )θ ξ θw = 8.5, 8.0, 7.5, 7.0

Pr = 5.0, 7.0, 10, 20

β = 0.35
β = 0.40

θw = 3.0
θw = 6.0

Figure 13. Variation of 1/ 2Rex fC  for K1 vs. We 
when Re = 3, n = 2, and M = 0.5

Figure 14. Variation of 1/ 2Rex fC  for Re vs. M 
when We = 0.5, K1 = 2.0, and n = 2
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1/
2

R
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M
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Table 1 indicates the numerical values of the local Nusselt number 1 2Re Nu−
x x  for 

several values of 1,Re, , Pr, wK Rd θ , β  and by keeping M 1, We 0.5= = , and 2n =  fixed. It is 
found that the magnitude of the 1 2Re Nu−

x x  is increased by increasing the values of Re, , Pr, wRd θ  
and β  , but it has the opposite trend for 1K .

Table 1. Numerical values of the Nusselt number −1 2Re Nux x  for various values 
of 1,Re, , Pr, wK Rd θ  and β  by keeping = =M 1, We 0.5 and = 2n  fixed

K1 Re Pr Rd θw β 1 2Re Nux x
−

1 3 7 0.5 2 0.2 0.94390
3 0.94158
5 0.94107
2 5 0.95438

7 0.96102
9 0.96537
3 5 0.93267

10 0.95087
15 0.95919
7 0.8 1.38579

1.2 1.97010
1.5 2.40371
0.5 1.5 0.50701

2.5 1.65850
3 2.72500
2 0.4 1.77350

0.6 2.50157
0.8 3.13451

Concluding remarks

In current analysis, we have investigated the characteristic of flow of a Carreau fluid 
in a semi permeable curved shape channel which is highly affected by the influence of magnetic 
field and non-linear radiative heat transfer with convective boundary condition. The solutions 
of governing flow equation are numerically computed for the fluid velocity and temperature 
distribution with the help of shooting method. The fundamental outcomes of the current study 
are.

 y The velocity of fluid is increased with an increment in the values of Weissenburg number and 
Reynolds number, whilst it decreases for larger value of magnetic parameter and K1.

 y The temperature of the fluid and also the thermal boundary-layer thickness, shows decreas-
ing behavior for higher values of Reynolds and Prandtl numbers. 

 y It is noticed that for high values of wθ  the temperature and also the thermal boundary-layer 
thickness shows increasing behavior. However, it decreases for higher values of Rd.

 y For larger values of Reynolds number and K1 the pressure distribution ( )P ξ  shows decreas-
ing behavior.
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