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This paper aims to explore the impact of the order of numerical schemes on the 
simulation of two-phase slug flow with a two-fluid model initiation. The governing 
equations of the two-fluid model have been solved by a class of Riemann solver. 
The numerical schemes applied in this paper involve first-order (Lax-Friedrichs 
and Rusanov), second-order (Ritchmyer), and high-order (flux-corrected transport 
or FCT and total variance diminishing or TVD). The results suggest that the TVD 
and FCT are able to predict the slug initiation with high accuracy compared with 
experimental results. Lax-Friedrichs and Rusanov are both first-order schemes and 
have second-order truncation error. This second-order truncation error caused nu-
merical diffusion in the solution field and could not predict the slug initiation with 
high accuracy in contrast to TVD and FCT schemes. Ritchmyer is a second-or-
der scheme and has third-order truncation error. This third-order truncation error 
caused dispersive results in the solution field and was not a proper scheme.
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Introduction

Prediction of two-phase flows behavior in pipeline is vital due to their application in 
transportation of crude oil from offshore to onshore and their steam and nuclear steam supply 
systems. Accordingly, three kinds of models for simulation of two-phase flows are presented in 
the literature: homogeneous equilibrium model [1], drift-flux model [2], and two-fluid model 
[2, 3]. The two-fluid model is the best choice in this paper. With this in mind, there are two sets 
of conservation equations for each phase in the two-fluid model and this is the most detailed 
model among the previous models. 

The 1-D form of the two-fluid model is derived by area averaging the flow properties 
over the cross-section of the flow. The momentum transfer between the walls and the phases is 
calculated by source terms and must be formulated using empirical correlations [3]. The inter-
action between the phases in the interfaces is calculated by source terms, too. Therefore, this 
paper benefited from the slug capturing technique through which the slug flow is predicted as a 
mechanistic and automatic outcome of the growth of hydrodynamic instabilities [4].

Issa and Kempf [5] using the two-fluid model for simulation of the slug flow with 
slug capturing technique. However, the two-fluid model was ill-posed and their results were 
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limited to the flow conditions under which the governing equations was well-posed. Three-
phase gas-liquid-liquid slug flow modeled by Bonizzi and Issa [6]. Gas bubbles entrance in 
slugs improved the closure relations for modeling of the bubble entrainment into slugs which 
have been done by Bonizzi and Issa [7]. Single pressure two-fluid model using a central nu-
merical methods solved by Omgba-Essama [1] was used for modeling of slug flow. The au-
thor used an adaptive mesh refinement to improve the effectiveness of the methods. More 
detailed constitutive relations for the modeling of bubble entrainment in slug body presented 
by Issa et al. [8].

A technique for simulation of initiation and growth of slugs in the horizontal pipes 
are presented by Ansari and Shokri [9]. The researchers solved the governing equations of 
the transient compressible two-fluid model using groups of high-resolution shock-captur-
ing methods. They found that high-order methods do not have dissipation and dispersion 
properties and can capture the slug properties with high accuracy [9]. An accurate simu-
lation of the continuous slug flow with two-fluid model in oil and gas pipelines presented 
by Issa, et al. [10]. In their model hydrostatic pressure for two phases are assumed [10]. 
Simoes, et al. [11] modeled the slug frequency in a horizontal pipe with two-fluid model 
by finite-volume method. Bonzanini et al. [12] proposed a numerical resolution of a 1-D, 
transient, and simplified two-fluid model regularized with an artificial diffusion term for 
modeling stratified, wavy, and slug flow in horizontal and nearly horizontal pipes. They 
concluded that the artificial diffusion can prevent the unbounded growth of instabilities 
where the 1-D two-fluid model is ill-posed. Shokri and Esmaeili [13] presented a numeri-
cal study using single pressure transient two-fluid model in order to compare the effect of 
hydrodynamic and hydrostatic models for pressure correction term in two-fluid model in 
gas-liquid two-phase flow.

The focus of this study is modeling of two-phase slug flow and investigation of the 
effect of the order of numerical schemes on simulation of slugs. Modeling of the slug flow is 
important to find the time and location of the slug flow initiation to prevent from its formation. 
Because when the slug formed the gas trapped behind it and its pressure increases and push 
the liquid slug forward with high velocity and consequently can damage the instruments. The 
previously reviewed literatures indicate that the ability of the numerical schemes for simulation 
of the slug flow initiation with a class of Riemann solver has not been investigated. With this in 
mind, the current study investigates the ability of numerical methods in order to predict the slug 
flow initiation with two-fluid model.

Governing equation

In this paper, we use a simplified version of the 1-D two-fluid model for the derivation 
of the model. The two-fluid model used here consists of two PDE and two algebraic relations. 
The first PDE is the total mass equation [14]:

	 ( ) ( ) 0L L G G L L L G G GR R R V R V
t x
ρ ρ ρ ρ∂ ∂

+ + + =
∂ ∂

	 (1)

The second PDE is the total momentum equation [14]:

	 ( ) ( )2 21 1 g cos  
2 2L L G G L L G G L G LV V V V h H

t x
ρ ρ ρ ρ ρ ρ β∂ ∂  + + − + − = ∂ ∂  

	 (2)
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With the source terms given by [14].

	 ( ) 1 1gsin G G L L
L G I I

L G G L

S SH S
R A R A R A R A

τ τρ ρ β τ
 

= − − + + + − 
 

	 (3)

The kth is phase (k = G is gas and k = L is liquid), kR  – the volume fraction, kV  – the 
velocity kρ  – the density, A – the pipe cross-section. The GA ,  LA , and D are the gas phase and 
liquid phase cross-section area, and the pipe diameter, respectively. The g is gravity, β  – the 
pipe inclination angle, Lh  – the height of the liquid phase, and Gτ , Lτ  and Iτ  – are gas-wall, 
liquid-wall, and interface shear stress, respectively. The GS , LS , and IS  represent the wet gas 
perimeter, wet liquid wet, and interface, respectively. Cross-section and side views of two-
phase flow pipe are shown in fig. 1(a). The geometric restriction for two phases is [15]:

	 1L GR R+ = 	 (4)
In addition to the geometric constraint, another relation is required that is presented 

as following:

	 ( ) 0L L G GR V R V
x
∂

+ =
∂

	 (5)

According to the eq. (5), it is concluded that there is only time functionality in this 
equation. This time function is indicated by ( )C t  and considered as a function of the inlet flow 
parameters:

	 inlet( ) ( )L L G G L L G GR V R V C t R V R V+ = = + 	 (6)

The subscript inlet refers to the inlet of the pipe.

Constitutive relations

The constitutive relations that we need to close the system of equations of the two-flu-
id model are wall-gas shear stress, wall-liquid shear stress, and interface shear stress. The fol-
lowing relations are used for calculating the wall-gas, wall-liquid, and interfacial shear stress, 
respectively [16]:

	 1
2k k k k kf V Vτ ρ= 	 (7)

	 ( )1
2I I G G L G Lf V V V Vτ ρ= − − 	 (8)

In eqs. (7) and (8), Kf  and If  are kth phase and interface friction factor, respectively. 
In which a hydraulic diameter is used [16]:

	 Re k hk k
k

k

D Vρ
µ

= 	 (9)

	 4 L
hL

L

AD
S

= 	 (10)

	 4 G
hG

G L

AD
S S

=
+

	 (11)
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where Dhk is hydraulic diameter of kth phase and Rek – the Reynolds number of kth phase. The 
kµ  is viscosity of kth phase. The surface roughness is assumed to 54.61 10ε −= ⋅  [9]. The fric-

tion factors are calculated by following equations [1]:

	

1
6 3

416 10max  , 0.001375 1 2 10
Re ReG

G hG G
f

D
ε

  
    = + ⋅ +    

     
  

	 (12)

	 1
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4
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Re Re

hL
L G

L L L

L
L hL L

Df j
R D

f
D
ε

  
= >     


   

     = + × +    
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	 (13)

	

for 5

1 max 0,1 5 1 for 5
5

I G G

G L
I G G

f f j

j hf f j
D

= <


     = + − ≥         

	 (14)

In the previous equations, D represents the pipe diameter and Gj  is gas superficial 
velocity.

Numerical solution

Equations (1) and (2) can be written in conservative from [14]:

	 Q F H
t x

∂ ∂
+ =

∂ ∂
	 (15)

In the previous equation, Q  is a vector field of conservative variables F, and H are 
algebraic functions of Q  only and are flux and source terms, respectively. In the current paper, 
a class of Riemann solver is used:

	 ( )1
1/2 1/2

ˆ ˆn n
i i i i i

tQ Q F F tH
x

+
− +

∆
= + − + ∆

∆
	 (16)

In eq. (16), x∆  is spatial step size, t∆  – the time step size, n  and 1n +  current and 
previous time, respectively. The Q  is a vector field of conservative variables,  is numerical fˆ lux  F  
and H – the source term. Selection of the proper numerical scheme is important. Five following 
numerical methods have been studied in this paper:

Lax–Friedrichs 

This is a first-order explicit method in space and time [17]. Flux term is calculated:

	 1/2 1 1 )ˆ 1 (  ) (
2 2

LF n n n n
i i i i i

xF F F Q Q
t+ + +

∆
= + − −

∆
	 (17)
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Rusanov 

This is first-order explicit, too. However, it uses maximum value of characteristics 
derived by hyperbolic analysis [1]. Flux term is calculated:

	 1/2 1 1/2 1
1 ( )  ˆ ( )
2

( )Rus n n n n
i i i i i iF F Q F Q Q Qλ+ + + + = + − −  	 (18)

	 ( )1/2 1max max , max 1,k k
i i i eqk Nλ λ λ+ += = 	 (19)

where eqN  is the number of partial equations and 1/2iλ +  is the average wave velocity. 

Ritchmyer 

This is an explicit numerical method. It is a second-order method in time and space 
consisting of two steps [17]. Flux term should be calculated:

	 1/2 1
1  ( )
2

n n n
i i iQ Q Q+ += + 	 (20)

	 1/2
1/2 1/2 1 1/2 ( ) ( )

2 2
n n n n n
i i i i i

t tQ Q F F H Q
x

+
+ + + +

∆ ∆
= − − +

∆
	 (21)

	 1/2
1/2 1/2 )ˆ (RI n

i iF F Q +
+ += 	 (22)

Flux-corrected transport 

This is a high-precision method proposed by Boric and Book [18]. This is a predictor/
corrector method in which diffusion enters to the system in the prediction step in order to elim-
inate the extreme points in the flow field. The FCT contains five steps [18]. The nQ  is the solu-
tion at previous time step, and  Q is the new answer which has obtained with Ritchmyer scheme.

	 1/2 1/2 1( )d n n
i i i iF Q Qυ+ + += − 	 (23)

	 1/2 1/2( )d d d
i i i iQ Q F F+ −= + − 	 (24)

	 1/2 1/2 1( )ad
i i i iF Q Qγ+ + += −  	 (25)

	 { }1/2 1 1/2 2 1.max 0, max .( ), , .( )cad d ad d
i i i i i iF s s Q Q F s Q Q+ + + + +

 = − − 
  	 (26)

	 1/2sign( )ad
is F += 	 (27)

	 1/2 1/2 1/2
ˆ FCT cad d
i i iF F F+ + += − 	 (28)

The diffusion and anti-diffusion coefficients, i. e.,  υ  and γ  are calculated [19]:

	 21 1 2( )
6

CFLυ  = +  	 (29)

	 21 1 ( )
2

CFLγ  = +  	 (30)

where CFL is courant Friedrichs Levy number.
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TVD Lax-Friedrichs

This is a high-order method that does not include artificial diffusion. Different forms 
of this method have been described in the article by Toth and Odstrcil [20]. The flux term can 
be estimated by the following procedure:

	 1/2 1/2 1/2 1/2
ˆ (1 ( ) )

2 2
TVDLF L R LR

i i i i
xF F Q F Q
t
φ+ + + +

∆ = + −  ∆
	 (31)

The left and right state vectors LQ  and  RQ are calculated by using an intermediate 
state vector 1/2nQ +  and limited differences Qδ  .

	 1/2
1/2

1
2

L n n
i i iQ Q Qδ+
+ = +  	 (32)

	 1/2
1/2 1 1

1
2

R n n
i i iQ Q Qδ+
+ + += − 	 (33)

The intermediate vector, also called the Predicator step, is calculated:

	 1/2 1 1 ( )
2 2 2 2

n n n n n n n
i i i i i i i

t tQ Q F Q Q F Q Q S Q
x

δ δ+ ∆   ∆   = − + − − +    ∆     
	 (34)

The  LRφ  is the dissipative Limiter and is evaluated:

	 max
1/2 ( ) LR R L

i
t Q Q
x

φ λ +
∆

= −
∆

	 (35)

In this method, the wave velocity is calculated:

	 max
1/2 max

2

R L

i k
Q Qλ λ+

 +
=  

 
	 (36)

To find the limited differences value, the min mod function is applied:

	 1 1min mod( , )n n n n n
i i i i iQ Q Q Q Qδ − += − − 	 (37)

Time step size

To calculate step size, x∆  must be first determined. For explicit numerical methods 
there is a stability condition called courant Friedrichs Levy number and (CFL) ≤ 1. Using x∆  
and CFL number, time step size is calculated:

	
max

 n
xt CFL

λ
∆

∆ = 	 (38)

where max
nλ  is the maximum value of wave velocity in the flow field at the previous time step. 

The max
nλ  is selected at each time step and because of the variability of max

nλ , the solution meth-
od has a variable time step size. The maximum value of wave velocity in the flow field is pre-
sented in Omgba-Essama work [1].

Initial and boundary condition (Slug flow modeling)

Gas phase is considered as air with a density of 1.14 kg/m3 and liquid phase is consid-
ered as water with a density of 1000 kg/m3. A horizontal pipe with the length of 5 m and the di-
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ameter of 0.078 m is selected with two phases in stratified regime initially. The inlet superficial 
gas velocity is 6.532 m/s and inlet superficial liquid velocity is 0.532 m/s. The volume fraction 
of liquid at the initial condition is 0.526. As shown in the fig. 1(b), the initial condition consid-
ered in slug flow regime is movable. In other words, the initial conditions located on the un-
stable inviscid Kelvin-Helmholtz (IKH) line and are in transition from stratified pattern to slug 
pattern. The IKH instability line is known as the well-posed region of two-fluid model [21].

The initial velocities of each phase are calculated by volume fraction and superficial 
velocity of each phase at the inlet of pipe. The boundary conditions are considered equal to the 
initial conditions at the entrance of the pipe. For outlet boundary conditions, a fully developed 
condition is considered.

Figure 1. (a) Cross-section and side views of two phase flow in pipe, (b) IKH transition lines  
from stratified flow 
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Result and discussion

Figures 2(a)-2(e) illustrate the mesh study of slug flow initiation point, with five dif-
ferent numerical methods: Lax-Friedrichs, Rusanov, Ritchmyer, and FCT and TVD Lax-Fried-
richs, respectively. Time and CFL is considered 3 seconds and 0.3, respectively.

Figures 2(a), 2(b), 2(d), and 2(e) demonstrate the slug flow initiation point for 100, 
700, 1400, 2800, and 5600 computational cells using Lax-Friedrichs, Rusanov, FCT and TVD 
Lax-Friedrichs methods. Results show that in 2800 the solution is independent from the cells 
number in these four methods.

Figure 2(c) show the slug flow initiation point for 100 and 200 computational cell 
based on the Ritchmyer numerical method. Results show that the Ritchmyer numerical meth-
od has an oscillatory nature where reducing the size of the computational cell the oscillations 
become greater. This is the second-order method which has the third-order error and causes the 
solutions to be dispersed in the flow field. As a result, the Ritchmyer numerical method is not 
proper for modeling the slug flow regime. Ritchmyer numerical method is a second-order meth-
od which has third-order error. This type of error leads to numerical dispersion for solutions 
near the discontinuity due to formation of slug flow regime. Therefore, this method is omitted 
from the rest of this paper.

Figure 3(a) indicates the comparison of different methods of predicting the slug ini-
tiation point. The calculations are in 2800 computational cell. Time and CFL are 3 seconds 
and 0.3, respectively. Figure 3(b) indicates the slug initiation point compared with the Ansari’s 
experimental result [22].

Figure 3(b) shows that the Lax-Friedrichs has the lowest accuracy predicting the slug 
regime and TVD-Lax-Friedrichs is the most accurate method. The numerical diffusion embed-
ded in the first-order Lax- Friedrichs predicts the flow field discontinuities in dispersion form. 
Thus, Lax-Friedrichs cannot predict the slug initiation with reasonable accuracy.
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In comparison with the Lax-Friedrichs, Rusanov predicts the slug initiation more ac-
curately. Rusanov is a first-order method and has second-order error, too. This second-order 
error contributes to a numerical diffusion cause to dispersion of discontinuity in flow field. 
Rusanov numerical method is a characteristic-based method which has more information about 
the flow characteristics.Hence, Rusanov generates less numerical diffusion in contrast with the 
Lax-Friedrichs and can predict the slug flow initiation with higher accuracy.

In addition, fig. 3(b) indicated that FCT method predicts the slug flow initiation more 
accurate compared to the Lax-Friedrich and Rusanov and TVD-Lax-Friedrichs is the most ac-
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Figure 3. (a ) Comparison of various numerical accuracy in predicting the beginnings of slug flow 
regime, (b) comparison of obtained initiation point of slug flow with experimental results 
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curate scheme in the prediction of the slug initiation among other methods introduced in this 
paper. The FCT is a high-precision and TVD Lax-Friedrichs is a high-order method and they do 
not suffer from diffusive error (second-order truncation error) and dispersive error (third-order 
truncation error). However, the TVD Lax-Friedrichs is more accurate because it is a high-order 
method.

Conclusions

This paper aimed to present the impact of the order of numerical schemes on simula-
tion of slug initiation. The governing equations of two-fluid model have been solved by a class 
of Riemann solver. The numerical schemes used in this paper include Lax-Friedrichs, Rusan-
ov, Ritchmyer, FCT, and TVD Lax-Friedrichs. The results show that the TVD Lax-Friedrichs 
and FCT can predict the slug initiation with reasonable accuracy compared with experimental 
results. However, the TVD Lax-Friedrichs is more accurate because it is a high-order method. 
Lax-Friedrichs and Rusanov are both first-order schemes and both of them have second-order 
truncation error which causes numerical diffusion in the solution field. Consequently, they can-
not predict the slug initiation with reasonable accuracy in contrast to TVD and FCT schemes. 
Ritchmyer is a second-order scheme and has third-order truncation error. This causes dispersive 
results in the solution field and meaning that it is not a proper scheme.
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