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In this study, natural convection flow along a vertical wavy surface has been in-
vestigated with variable heat flux. The governing equations are transformed into 
dimensionless PDE by using the non-dimensional variables and then solved nu-
merically by using an implicit finite difference scheme known as Keller Box meth-
od. The effects of the parameters amplitude of the wavy surface, α, exponent of the 
variable heat flux, m, and Prandtl number on the local skin friction coefficient and 
local Nusselt number are shown graphically. It is found that for the negative value 
of exponent of the variable heat flux, m, the local skin friction coefficient increases 
and Nusselt number decreases but the opposite behavior is observed for the posi-
tive values of m. The comparison of limiting case with the previous study is shown 
through table and it is found that the solution obtained is in excellent agreement 
with the previous studies.
Key words: natural convection, variable heat flux, vertical wavy surface, 

numerical solution

Introduction

In natural convection flow, heat is transformed from solid to liquid due to the density 
difference of the fluid without considering any external source. Natural convection flow has 
significant importance due to its several applications in industries and engineering problems. 
Applications include cooling of electronic components, crystal growth, geothermal systems, 
heat exchangers, nuclear reactors, metallurgical processes, etc. To enhance the heat transfer 
rate, rough and irregular surfaces are intentionally considered rather than plane surfaces. Flow 
over an irregular surfaces has become very important in industrial problem due to its many ap-
plications, which are solar collectors, condensers, cavity wall insulating system, grain storage 
containers, and industrial heat radiation.

Natural convection flow along a vertical wavy surface has received the attention of the 
researchers due to its practical applications. Yao [1] was the first, who studied natural convec-
tion flow along a vertical wavy surface. After that, Moulic and Yao [2] studied the mixed con-
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vection flow along a wavy surface. Bhavnani and Bergles [3] studied natural convection heat 
transfer from sinusoidal wavy surface. Rees and Pop [4] investigated free convection induced 
by horizontal wavy surface in a porous medium. They considered these cases in which waves 
have an 1/3 (Ra )−O  amplitude and found that the reverse flow occurs at the heated surface when 
amplitude was considered greater than 1/3 0.95Ra− . Kim [5] studied natural convection flow 
along a wavy vertical plate to non-Newtonian fluids. Chiu and Chou [6] presented transient 
analysis of natural convection along a vertical wavy surface in micropolar fluid. They solved 
the governing PDE by a simple transposition theorem and cubic spline collocation method. 
Notable studies [7-14] on vertical wavy surface have been carried out by considering different 
flow phenomena. Recently, Golra and Kumari [15] studied the natural convection flow along 
vertical surface f wavy nature. They modeled the problem in non-similar form and used Keller 
box scheme to analyze it numerically. The effects of surface waviness amplitude on heat and 
mass transfer rate are presented through graphs. Mustafa et al. [16] studied the natural convec-
tion flow of nanofluid along the vertical surface of wavy texture. They performed numerical 
simulation and results are presented through table and graph. Srinivasacharya and Kumar [17] 
studied radiation influence on nanofluid over an inclined wavy surface saturated with non-Dar-
cy pours medium. They use similarity transformation to reduce governing PDE into ODE and 
used successive linearization method for the solution purpose. Mahdy and Ahmed [18], Habiba 
et al. [19], Mustafa and Javed [20] also performed interesting studies along vertical wavy sur-
face. 

Merkin and Mahmood [21] studied the free convection boundary-layer flow on a ver-
tical plate with prescribed surface heat flux. They considered a variable wall heat flux which is 
proportional to 2(1 )x µ+ . They investigated that for 1/2µ > − , similarity solution valid for x 
small to the one valid for large and for  1/2µ ≤ −   the similarity equation are not solvable for 
large value of x. Moulic and Yao [22] investigated natural convection flow along a wavy surface 
with uniform heat flux. Rees and Pop [23] studied the free convection boundary flow induced 
by a vertical wavy surface with uniform heat flux in porous medium. Pop et al. [24] investigat-
ed the free convection flow along a vertical surface with prescribed surface heat flux in a micro-
polar fluid. They showed that wall temperature increases with the increase of wave amplitude 
parameter, whether the fluid is Newtonian or micropolar. Tashtoush and Irshaid [25, 26] studied 
heat and fluid flow from a wavy surface subjected to a variable heat flux. They found a separa-
tion point when the amplitude of the wavy surface was considered 0.2 and they showed that the 
solutions exist for small and large values of x when the exponent of the variable heat flux was 
considered greater than –0.5.

The above literature witnessed that the numerical study of natural convection flow along 
vertical surface of sinusoidal nature with variable heat flux has not been considered before. The 
aim of present study to put our efforts for finding the numerical solution of natural convection flow 
along a vertical wavy surface with variable heat flux. For this purpose, we chose a heat flux mod-
el at the wall as proposed by Merkin and Mahmood [21] which is proportional to 2(1 )mx+ . In this 
expression if we chose 0, m = the case reduced to the constant heat flux model as done by Musta-
fa and Javed [20], and for 1, 2, 3 .m = … , we get highly non-linear model for wall heat flux.  

Mathematical formulation

The natural convection viscous, incompressible boundary-layer flow along a vertical 
wavy surface with variable heat flux is considered. The variable wall heat flux 2

0 1( )m
wq q x= +  

assumed by Merkin and Mahmood [21] is applied behind the plate, where x is the dimension-
less variable and 0q  is constant. The surface of the plate is considered as a wavy surface, which 
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Figure 1. (a) The physical model and co-ordinate system, (b) net rectangle 
of difference approximations for the Keller box scheme
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is defined as ( )  sin(2 / )x x Lσ α= π , where α  is the amplitude and L is the characteristic length 
of the sinusoidal wave. The geometry of the wavy surface is shown in fig. 1. The governing 
equations of the considered problem with Boussinesq approximations can be written:

 0u v
x y
∂ ∂

+ =
∂ ∂

 (1)

 ( )21u u pu v u g T T
x y x

ν β
ρ ∞

∂ ∂ ∂
+ = − + ∇ + −

∂ ∂ ∂
 (2)

 21v v pu v v
x y y

ν
ρ

∂ ∂ ∂
+ = − + ∇

∂ ∂ ∂
 (3)

 2

p

T T ku v T
x y Cρ

∂ ∂
+ = ∇

∂ ∂
 (4)

where ( , )x y  are the Cartesian co-ordinate system along and normal to the tangent of wavy 
surface and ( , )u v  are the components of velocity in the x - and y-directions, respectively, p 
– the pressure, ν  – the kinematic viscosity, ρ – the density of the fluid, T  – the temperature, 
T∞ – the uniform ambient temperature, g – the acceleration, β  – the thermal expansion coeffi-
cient, k  – the thermal conductivity, and pC  – the specific heat. The boundary conditions for the 
problem are given:

 ( )2
00, 0,  ( ) 1 at

0, ,
( ) ( )

as∞ ∞

= = − ∇ = = + =

= = = →∞

m
wu v k n T q q x y x

u T T p p y
x σ

 (5)

where 0q  is the constant, n  – the unit normal to the wavy surface, and  p∞– the outside bound-
ary-layer pressure of the fluid. After using the following non-dimensional variable as used by 
Pop et al. [24]:
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∞
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 (6)



Ghaffari, A., et al.: Modeling and Simulation of Natural Convection Flow along a Rough Surface ... 
3394 THERMAL SCIENCE: Year 2019, Vol. 23, No. 6A, pp. 3391-3400

into the eqs. (2)-(4) and ignoring the small order terms in Grashof number, the following non-di-
mensional form of the governing equations are obtained:

 ( )
1 2

25
2
 1  r
 

Gx x
u u p p uu v
x y x y y

σ σ θ∂ ∂ ∂ ∂ ∂
+ = − + + + +

∂ ∂ ∂ ∂ ∂
 (7)

 ( )
1 2

2 25
2
 Gr 1
 x x x xx

u u p uu v u
x y y y

σ σ σ σ
 ∂ ∂ ∂ ∂

+ = − + + − ∂ ∂ ∂ ∂ 
 (8)

 
2 2

2 2
12  

Pr1
xmxu v u

x y x y
σθ θ θθ

+∂ ∂ ∂
+ + =

∂ ∂ + ∂
 (9)

where Grashof number is 4 2Gr g ( ) /= wq x L kvβ . The pressure gradient along the x-axis is deter-
mined by using the inviscid flow solution, which gives that /p x∂ ∂ = 0. Equation (8) shows that 
the term on the left hand is of O(1) that’s why the pressure gradient along y-axis /p y∂ ∂  should 
be of 1/5(Gr )O − . After eliminating the pressure gradient /p x∂ ∂  from eqs. (7) and (8) leads to:

 ( )
2

2 2
2 2 2
 1  
 1 1

x xx
x

x x

u u uu v u
x y y

σ σ θσ
σ σ

∂ ∂ ∂
+ = + − +

∂ ∂ ∂ + +
 (10)

The boundary conditions will reduce to the form:

 2

10, 0, at 0
 1

0, 0, 0 as
x

u v y
y

u p y

θ

σ
θ

∂ = = = − = ∂ + 
= = = →∞ 

 (11)

For the numerical solution of the governing eqs. (9) and (10), we introduce the fol-
lowing transformations:

 
4 1 1
5 5 5(5 ) ( , ),  (5 ) ( , ),  (5 )  

−
= = =x f x x x y xψ η θ θ η η  (12)

where ψ  is the stream function, which is defined as /u yψ= ∂ ∂  and /v xψ= −∂ ∂ . The above 
equations become:
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2 2
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σ σ
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and boundary conditions take the new form:
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( ) ( )

2

1,0 ' ,0 0, ,0
1
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x
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θ
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θ
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 (15)

where prime denotes the partial derivative with respect to η. The physical quantities of interest 
are the skin friction coefficient and Nusselt number which are defined:
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)
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xq xC
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= =
−

 (16)

where k is the thermal conductivity of the fluid, wτ  – the wall shear stress, and ( )wq x  – the 
variable heat flux from the surface, which are defined:

 ( ) ( )0 0
   , wy y

n u q k n Tτ µ
= =

= ∇ = − ∇  (17)

After using the eqs. (12) and (17) into the eq. (16), the skin friction coefficient and 
Nusselt number take the form:
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Numerical solution

The non-linear PDE (13) and (14) along with boundary conditions (15) are solved by 
an implicit finite difference scheme known as Keller box [27]. This method is stable and has 
second order accuracy. In this method, we first converted differential equations into the system 
of the first-order form. For this purpose, we introduced new dependent variables ( , ), ( , )U x V xη η , 
and ( , )Q x η . Letting:

 , ,f U f V Qθ′ =′= ′ =′  (19)

by using the relation into eqs. (13)-(15) we obtained following reduced form:

 2
1 2

1

14 5 0U fL V L U fV x U V
L x x

θ
  ∂ ∂ − + + − − =   ∂ ∂ 

′
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x x
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∂
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and the boundary conditions are:
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 (22)

where 
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Now the next step is to approximate the quantities f, U, V, θ , and Q at the points  
(xn, ηj). The values of the functions are replaced by its mean value like:

 ( ) ( ) ( ) ( ) ( ) ( )1/2 1
1 1
2

1 1 ,  
2 2

n n n n n n− −
−−

   = + = +   j j j j jj
       

and derivatives in η  and x-direction are replaced by central differences like:

 ( ) ( ) ( ) ( ) ( ) ( )1/2 1
1 1
2

1 1 ,  n n n n n n− −
−−

   = − = −   j j j j jj h k
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To handle the non-linearity of resulting algebraic equations, Newton’s linearization 
process is implemented. For (i + 1)th iterations we write:

 1 1 1, ,   i i i i i i i i i
j j j j j j j j jf f f U U U V V Vδ δ δ+ + += + = + = +

 1i i i
j j jθ θ δθ+ = +   and  1i i i

j j jQ Q Qδ+ = +  

The solution of the obtained system of linear equations is obtained by block tri-diag-
onal scheme over the rectangular nodes as shown in fig. 1(b). The node points over the rectan-
gular net are defined:

 0 10, , 1,2,3−= = + = …n n
nx x x k n N

 0
10,  , 1,2,3−= = + = …j j jh j Jη η η  

where n and j represent the position of the node point in x- and η-direction, respectively, and 
kn and hj are the step size in x- and η-direction.

The employed technique is validated by comparison of ''(0)f  with Pop et al. [24] and 
Sadiqa et al. [28] for a limiting case given in tab. 1. These results are in good agreement that 
gives us a confidence for the accuracy of the employed numerical technique.

Result and discussion

A numerical solution of coupled non-linear PDE (13) and (14) subject to the boundary 
conditions (15) is obtained by using an implicit finite difference scheme as previously described. 
The effects of various parameters, namely amplitude of the wavy surface, α , exponent of vari-
able heat flux, m, and Prandtl number on the local skin friction coefficient fxC  and local Nusselt 
number, Nux, are shown graphically. 

Figures 2(a) and 2(b) show the graphical result of local skin friction coefficient and local 
Nusselt number for various values of the amplitude of the wavy surface, α , along the x-direction 
with Prandtl number Pr 1=  and exponent of variable heat flux m = 1. It is observed that local skin 
friction coefficient and local Nusselt number decrease with the increase of amplitude of the wavy 
surface, α . In fig. 2(a) the highest peak is obtained near the leading edge but far away from the 
leading edge, fxC , decreases monotonically. The effects of exponent of variable heat flux m on fxC  
and Nux are shown in figs. 3(a) and 3(b) with Prandtl number Pr = 1 and 0.2α = . It is seen that 
local skin friction coefficient, fxC , decreases and local Nusselt number increases with the increas-

Figure 2. (a) Change in skin friction coefficient along with wavy amplitude α  (b) change in Nusselt 
number along with wavy amplitude α
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ing of exponent of variable heat flux, m. For negative value of m the highest peak of the wave in 
skin friction coefficient is obtained far away from the leading edge and skin friction coefficient 
increases along the upstream direction. For non-negative values of m the highest peak of the wave 
is obtained at the leading edge. In fig. 3(b) the local Nusselt number decreases along the down-
stream direction for negative value of m and the highest peak is obtained near the leading edge and 
far away from the leading edge the amplitude of the wave tends to zero.

For the constant heat flux m = 0, the amplitude of the wave decreases far away from 
the leading edge but for the positive value of m it is seen that the local Nusselt number increas-
es along the upstream direction. The effects of various values of Prandtl number on the local 
skin friction coefficient and Nusselt number are shown in figs. 4(a) and 4(b) with α  and m = 1. 
Figure 4(a) depicts that local skin friction coefficient decreases along the downstream direction 
with the increasing of Prandtl number also the amplitude of the wave decreases far away from 
the leading edge. Figure 4(b) describes that local Nusselt number increases with the increasing 
of Prandtl number, secondly Nusselt number increases along the upstream direction due to the 
variable heat flux. The isothermal lines and streamlines for different values of exponent of vari-
able heat flux m with amplitude 0.2  α = and Pr = 0.5 are shown in figs. 5(a)-5(d) and 6(a)-6(d). 
In figs. 5(a)-5(d) isothermal lines illustrate that thermal boundary-layer thickness decreases 
with the increase in exponent of variable heat flux m. In figs. 6(a)-6(d), streamlines illustrate 
that flow rate decreases within the boundary-layer with the increasing of exponent of variable 
heat flux m and the values of maxψ  reduces which are 8.62 to 5.25 when m is considered from 
–0.5 to 2.0.

Figure 3. (a) Change in skin friction for different m and (b) change in Nusselt number for different m
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Figure 4. (a) Change in skin friction for different value of Prandtl number and (b) change in Nusselt 
number for different value of Prandtl number
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Figure 5. Isothermal lines for (a) m = –0.5, (b) m = 0.0, (c) m = 0.5, (d) m = 2.0 when α = 0.2 and Pr = 0.5
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Figure 6. Stream lines for (a) m = –0.5, (b) m = 0.0, (c) m = 0.5, (d) m = 2.0 when α = 0.2 and Pr = 0.5
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Concluding remarks

The study of natural convection flow over the surface of vertical wavy texture due 
to variable heat flux has been performed. The mathematical model of the present problem is 
developed in form of non-linear PDE. These highly non-linear PDE are transformed into di-
mensionless form by using suitable transformations. These obtained equations are simulated 
numerically with help of finite difference scheme and results are presented in form of Nusselt 
number, skin friction coefficient, stream lines and thermal lines.  It is found that

 y The local skin friction coefficient increases and local Nusselt number decreases for the neg-
ative value of exponent of the variable heat flux m but for the positive values of m opposite 
behavior is observed.

 y Thermal boundary-layer thickness and boundary-layer flow rate decrease with the increas-
ing of the exponent of the variable heat flux m. 

 y With increase of m random motion in fluid particles near the wall changes rapidly and dis-
persion in the streamlines is as noted.
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