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This paper presents the theoretical analysis of comparison of porous structures on the 
performance of a slider bearing with surface roughness in micropolar fluid film 
lubrication. The globular sphere model and Irmay's capillary fissures model have been 
subject to investigations. The general Reynolds equation which incorporates random-
ized roughness structure with micropolar fluid is solved with suitable boundary 
conditions to get the pressure distribution, which is then used to obtain the load carrying 
capacity. The graphical representations suggest that the globular sphere model scores 
over the Irmay's capillary fissures model for an overall improved performance. The 
numerical computations of the results show that, the act of the porous structures on the 
performance of a slider bearing is improved for the micropolar lubricants as compared 
to the corresponding Newtonian lubricants.
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Introduction
The slider bearing is simplest, among the hydrodynamic bearings and frequently 

encountered because the expression of film thickness is simple and boundary conditions to be 
required zero at the bearing ends are not that complicated. Self-lubricated porous bearings, such 
as sintered bearings in which pores are impregnated with oil, are extensively used in industrial 
applications such as in instruments, domestic appliances, audio-visual equipment's, business 
machines, industrial machines, automobiles, and small electric motors. In addition to these, their 
low cost makes them economically viable. The development of the theory of hydrodynamic 
lubrication of porous bearings is not new. The Morgan and Cameron [1] were first gave an 
analytical survey of study of the porous bearings with the aid of hydrodynamic conditions. There 
have been numerous studies of various types of porous bearings, such as slider bearings by Uma 
[2], journal bearings by Prakash and Vij [3], and thrust bearings by Gupta and Kapur [4]. In all 
these studies the lubricant was Newtonian fluid. However, the Newtonian fluid constitutive 
approximation is not a satisfactory engineering approach to most of the lubrication problems. 
Hence the use of non-Newtonian fluids as lubricants has gained its importance in the modern 
industry. The experimental result shows that the addition of a small amount of long-chain 
polymer solutions (paraffin family) to a Newtonian fluid gives the most desirable lubricant. The 
study of the effect of surface roughness has a greater importance in the study of porous bearings as 
the surface roughness is inherent to the process used in the manufacturing industries. In general, 
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the roughness asperity height is of the same order as the mean separation between the lubricated 
contacts. In the situations, surface roughness affects the performance of the bearing system and it 
is inevitable to consider the influence of surface roughness on over all loads carrying mechanism. 
The micro-continuum theory is the simplest generalization of the classical theory of fluids, which 
allows for the polar effects such as the presence of micropolar fluids and body couples. The 
micropolar fluids might the expected to appear to a noticeable extent in a lubricant containing 
long-chain molecules when it is confined to narrow passages. Further, micropolar fluid theory is 
also the generalisation of classical theory of fluids [5]. However, in general due to non-uniform 
rubbing of the surface especially in slider bearing the distribution of surface roughness may be 
asymmetrical. Andharia et al. [6] studied the effect of surface roughness on the performance 
characteristics of 1-D slider bearings with an assumption of the probability density function for 
the random variable characterizing the surface roughness is asymmetrical with a non-zero mean.

The problems of slider bearings have received considerable attention as these are 
amenable to easy mathematical analysis. Such bearings are used for supporting transverse loads. 
The analysis of slider bearings with various film shapes is done by Pinkus, Sternlitcht, [7] and 
Hamrock [8] for Newtonian lubricants based on the assumption of perfectly smooth bearing 
surfaces. It is well known that the bearing surfaces, particularly after having some run-in and 
wear develop roughness. Several theories have been proposed for the study of surface roughness 
effects. The effect of 2-D sinusoidal roughness on the load support characteristics of a lubricant 
film was studied by Burton [9]. Tzeng and Saibel [10] introduced a stochastic concept for the 
study of 1-D surface roughness on the performance of 2-D inclined slider bearings. A more 
general form of dynamic Reynolds equation for micropolar fluid lubrication of porous slider 
bearings has been derived by Naduvinamani and Marali [11]. The generalized form of Reynolds 
equations have been derived by Christensen [12] and Elrod [13]. All these studies have been 
confined to non-porous bearings. In the case of porous bearings the problem of studying the effect 
of surface roughness is of greater importance, as the surface roughness is inherent in the process 
of their manufacture. The stochastic theory developed by Christensen for the hydrodynamic 
lubrication of rough surface has been extended for the porous bearings by Prakash and Tiwari 
[14]. Siddangouda et al. [15] proposed the study of combined effects of micropolarity and surface 
roughness on the hydrodynamic lubrication of slider bearings by mathematically modelling the 
surface roughness by a stochastic random variable with non-zero mean, variance and skewness. 
Advantages and disadvantages of traditional and modern approaches of surface analysis based on 
concepts of roughness and texture were discussed.

  None of the research article mentioned in the literature have consider the influence of 
different porous structure and the realistic applications, it is necessary consider in industrial 
application like oil recovery, piston rings and so on. The purpose of the present work is to consider 
different porous structures on the performance of slider bearings with surface roughness in 
micropolar fluid film lubrication.  

Mathematical formulation
of the problem

Figure 1 shows the geometry and physical configuration of the porous inclined slider 
bearing. It consists of two surfaces separated by a lubricant film. The lower surface of the porous 
bearing is at rest and the upper solid surface is moving in its own plane with a constant velocity  . , U
The minimum film thickness is h  and maximum h . It is assumed that the bearing surfaces are 0 1

rough and infinitely wide in the -direction. The lubricant in the film region as well as in the z
porous region is assumed to be micropolar fluids. 
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To represent the surface roughness the 
mathematical expression for the film thickness is 
considered to be consisting of two parts:

where is the mean film thickness , is a  h(x) , hs

randomly varying quantity measured from the 
mean level and thus characterizes the surface 
roughness, and is the length of the bearing. L  1

Further, stochastic part  is considered to have the hs

probability density function  defined over the f(h )s
domain , where is the maximum deviation from the mean film thickness. The mean, ‒C £ h £ C C  s 

* *α , the standard deviation  and the parameter , which is the measure of symmetry of the *σ  ε
random variable , are defined: hs

where  is an expectancy operator defined by: E

where the parameters ε are all independent of . The mean  and the parameter ε can * * * * *α , σ , and  x α  
assume both positive and negative values, whereas  always assumes positive values. It is *σ
assumed that the lubrication in the film region and that in the porous region is an incompressible 
fluid. It is also assumed that the body forces and body couples are absent.

The characteristic coefficients across the film of the micropolar fluid are constant. The 
basic equations governing the flow of micropolar lubricants under the usual assumptions of 
lubrication theory take the form.
Conservation of mass:

Conservation of linear momentum:

Conservation of angular momentum:

where  and  are the fluid velocity components in the - and -directions, respectively, and  u v x  y v  1

(x,y)  p  μ is the micro-rotational velocity component, - the fluid pressure, - the Newtonian 
viscosity coefficient,  and are additional viscosity coefficients for micropolar fluids, K γ 
respectively.

The film thickness  is given:h

where  is minimum film thickness, L  - the bearing length, and - the thickness of the porous 1 h δ 0

matrix as shown in the fig. 1. The relevant boundary conditions for the velocity components are: 
‒ At the upper interface  ( y = H )
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Figure 1. Porous slider bearing system
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‒  ( y = 0 )At the porous lower interface

where  is the Darcy velocity component in the -direction in the porous region.* v y
The flow of micropolar lubricants in a porous matrix is governed by the modified 

Darcy's law, which account for the polar effects is given by:

* * *where q = (u , v ) is the modified Darcy velocity vector:�

*where ϕ is the permeability of  the porous matrix and  is the pressure in the porous region, due to p
*continuity of fluid in the porous matrix,  satisfies the Laplace equation:p

Solution of the problem 
The solution of the eqs. (7) and (9) with the corresponding boundary conditions given in 

eqs. (11a) and (11b) are obtained in the form:

where

Substituting value of  in the integral of continuity equation: u

where  is the axial component of the fluid velocity in the film. The velocity component  with  v u
their expression given in eq. (16) and also using the corresponding boundary conditions given in 
eqs. (11a), (11b), and (18) gives the general Reynolds type equation for micropolar fluid in the 
form:

→
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where

Using Morgan-Cameron approximation and the fact that the surface δ is non-y = h + 
porous [1], substituting eqs. (13) and (14) in the following continuity equation for lower porous 
region:

Solving eq. (15) across porous film from , toy = 0  y = - δ:

Using Morgan-Cameron approximation and the fact that the surface −δ is non-y=
*porous [1]. Also, at the interface  = p p

Substituting this in eq. (19), the general Reynolds equation is obtained in the form:

where

where is the porous layer thickness. δ 
Multiplying both sides of eq. (24) by  and integrating with respect to  over the s sh h

interval −  to  and using eqs. (2)-(4), gives the averaged Reynolds equation in the form:C C

where ,  is the expected value of the film pressure, , and:E (H) = h E (p) = p P
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Case-1: (A globular sphere model)
A porous material is filled with globular particles (a mean particle size, ) which is cD

given in fig. A.
The Kozeny-Carman equation is a well-known relation 

used in the field of tribology to calculate the pressure drop of a 
fluid flowing through a packed bed of solids. This equation 
remains valid only for laminar flow under lubrication 
assumptions. The kozeny-Carman equation mimics some 
experimental trends and hence serves as a quality control tool 
for physical and digital experimental results. The Kozeny-
Carman equation is very often presented as permeability 
versus porosity, pore size and tortuosity.

The pressure gradient is assumed to be linear. In view of the discussion Liu the use of 
Kozeny-Carman formula leads to [16]:

where  is the porosity and l/l’ is the length ratio. Under suitable assumptions this ratio turns out to  e  
be around 2.5 from experimental results. In that case the Kozeny-Carman formula becomes:

Introducing the dimensionless quantities

where a = h /h  and ψ is permeability parameter for Kozeny model. Equation (25) takes the form:1 0

where 

eq. (26) is dimensionless Reynolds equation.
In limiting case where porous structure, surface roughness and micropolar fluid film are 

* * *absent i.e ψ = 0, α  = σ  = ε  = 0,  λ = 0, M = 1, the eq. (26) reduces to the corresponding Newtonian 
case [17].
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Figure A. Structure model of poro-
us sheets given by kozeny-Carman



Since the pressure is negligible on the boundaries of the slider bearing compared to 
inside pressure, solving eq. (26) under conditions:  

                                        
Integrating eq. (26) with respect to  gives:X

The dimensionless film pressure  is obtained as:P

where

The load carrying capacity, , is given in dimensionless form:W

Case-2: (A capillary fissures model)
In fig. B, the model consists of three sets of mutually 

orthogonal fissures (a mean solid size ) and assuming no loss sD
of hydraulic gradient at the junctions, Irmay derived the 
permeability [18]:

where  is the porosity.e
Considering the non-dimensional quantities:

* 2 3where ψ  = (D δ) S  is permeability parameter for Irmay model.s h

Using boundary conditions (27) the dimensionless pressure distribution takes the form:

where

The load carrying capacity,  is given in dimensionless form by:W,
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ous sheets given by Irmay



Results and discussion
The effect of surface roughness and micropolar lubricants on the performance 

characteristics of the porous inclined slider bearings is affected through the dimensionless 
*parameters α, σ, ε, M, ψ, ψ , e and λ. It is easily observed that the dimensionless pressure in the 

bearing system given by eqs. (29) and (32) while the non-dimensional load carrying capacity of 
the bearing system is obtained from eqs. (31) and (34). For numerical computations of the slider 
characteristics, the following sets of data are used for various non-dimensional parameters:

λ = 0.1, 0.2, 0.3, 0.4, e = 0.2, 0.22, 0.24, 0.26, 0.28, α ,ε = −0.05, −0.1, 0.0, 0.05, 0.1,
*M = 4, 6, 8, 10, σ = 0.0, 0.1, 0.2, 0.3, 0.4, ψ, ψ =10, 20, 30, 40, 50

For the numerical values of the roughness parameters α, ε, σ are also chosen that the 
corresponding film shapes are feasible.

Pressure (Case-1)
The effect of the micropolar lubricants on the variation of the non-dimensional pressure 

P X P with  is depicted in fig. 2 for different values of permeability parameter ψ. It is observed that  
decreases for increasing values of . Figure 3 depicts the variation of  with  for different values ψ P X
of . It is observed that the increasing values of  decreases the pressure. Figure 4 depicts the e  e
variation of non-dimensional pressure  with  for different values of  and it is observed that, P X M
the increasing values of  decreases pressure. It is also observed that the distribution of pressure M
with respect to  is significant which is seen in figs. 2 and 3.X

Pressure (Case-2)
The effect of micropolar fluid on the variation of non-dimensional pressure with for P X 

the different values of ψ  shown in fig. 5 and it is observed that, increasing values of decreases * * ψ  
the pressure  Figure 6 depicts the variation of non-dimensional pressure with for different P. P X 
values of . It is also observed that the increasing values of  decreases the pressure . Therefore, e e  P
sharp rise in the pressure is manifested in figs. 5 and 6. In fig. 7, it depicts the variation of non-
dimensional pressure with for different values of and it is observed that the increasing  P X M 
values of decrease pressureM  P.

Load carrying capacity (Case-1)
 Figure 8 shows the variation of non-dimensional load carrying capacity  with  for W λ

different values of ψ. The numerical value of   0 corresponds to the Newtonian case. It is λ =
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Figure 2. Variation of P with X for different values
of ψ with  α = -0.1, σ = 0.1, ε = -0.1, e = 0.2, M = 4, 

a = 2, and λ= 2

  

Figure 3. Variation of P with X for different values
of e with  α = -0.1, σ = 0.1, ε = -0.1, ψ = 10, M = 4,
a = 2, and λ = 2

  



observed that  decreases for increasing values of  and . Figure 9 shows the variation of non-W λ ψ
dimensional load carrying capacity  with λ for different values of  and it is observed that  W e W
decreases for increasing values of  and . The effect of roughness parameter , σ, and  on the λ e α ε
variation of  with  is depicted in the figs. 10-12, respectively, for two values of . It is observed W λ M
that the negatively skewed surface roughness increases  whereas positively skewed surface W
roughness decreases . Therefore, the significant decrease in  is observed for large values of  λ W W
as compared to the Newtonian case ( λ = 0).

Load carrying capacity (Case-2)
Figure 13 shows the variation of non-dimensional load carrying capacity  with  for W λ

*different values of ψ  and the numerical value of correspond to the Newtonian case. As  increases λ
*load carrying capacity increases or in other words we can say that  decreases, load carrying ψ

capacity increases. Figure 14 shows the variation of non-dimensional load carrying capacity  W
with  for different values of . It has been observed that  increases the load carrying capacity as λ e λ
porosity decreases. The effect of roughness parameters α, σ, and  on the variation of  with  is ε W λ
depicted in the figs.15-17, respectively, for two values of . It is observed that negatively skewed M
surface roughness increases  whereas positively skewed surface roughness decreases . W W
Therefore significant decrease in  is observed for large values of  as compared to the W λ
Newtonian case ( λ = 0 ).
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Figure 4. Variation of P with X for different values
of M with  α =-0.1, σ = 0.1, ε = -0.1, e = 0.2, ψ = 10,
a = 2, and λ = 2

  

Figure 5. Variation of P with X for different values
*of ψ  with  α =-0.1, σ = 0.1, ε = -0.1, e = 0.2, M = 4,

a = 2, and λ = 2

  

Figure 6. Variation of P with X for different values
of e with 

* α = -0.1, σ = 0.1, ε = -0.1, ψ = 0.2, M = 4,   

a = 2, and λ = 2

  

Figure 7. Variation of P with X for different values
of M with 

* α = -0.1, σ = 0.1, ε = -0.1, e = 0.2, ψ = 10,
a = 2, and λ = 2

  



Conclusions
On the basis of Christensen stochastic model, the performance of a slider bearing 

with surface roughness in micropolar fluid film lubrication using different porous structure 
have been studied. This investigation strongly suggests that the porous must be duly 
honoured while designing the bearing system, even if, suitable micropolar parameter is in place. 
Therefore, globular sphere model and Kozeny-Carman and Irmay's capillary fissures model have 
been subjected to investigations. A close scrutiny of the graphs suggests that the performance 
remains relatively better in the case of Kozeny-Carman's model as compared to Irmay's model.
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Figure 10. Variation of W with λ for different
values of α with  σ = 0.1, ε= -0.1, e = 0.2, ψ = 10, 

and, a = 2 

  

Figure 11. Variation of W with λ for different values
of σ with  α = -0.1, ε= -0.1, e = 0.2, ψ = 10, and a = 2 

  

Figure 12. Variation of W with λ for different values
of e with  α = -0.1, σ = 0.1, e = 0.2, ψ = 10, and a = 2  

  

Figure 13. Variation of W with λ for different
*values of ψ  with  α = -0.1, σ = 0.1, ε= -0.1, 

e = 0.2, and a = 2

  

Figure 9. Variation of W with λ for different values
of e with  α = -0.1, σ = 0.1, ε= -0.1, ψ = 10, and a = 2 

  

Figure 8. Variation of W with λ for different values
of ψ with  α = -0.1, σ = 0.1, ε= -0.1, and a = 2 

  



However, if one considers only the micropolar parameter then Irmay's model may be preferred 
over Kozeny-Carman's model in the case of a bearing with smooth surfaces. Also, this type of 
bearing systems (with the two porous structures) can support good amount of load even in the 
absence of flow, which is unlikely, in the case of conventional lubricants and this will open new 
openings in the field of tribology. 
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Figure 16. Variation of W with λ for different
values of σ with  α = -0.1, ε= -0.1, e = 0.2, 

*ψ  = 10, and a = 2

  

Figure 17. Variation of W with λ for different
values of ε with 

* α = -0.1, σ = 0.1, e = 0.2, ψ  = 10,
and, a = 2

  

Figure 15. Variation of W with λ for different values
of α with 

* σ = 0.1, ε = -0.1, ψ  = 10, e = 0.2, and a = 2

  

Figure 14. Variation of W with λ for different
values of e with  α = -0.1, σ = 0.1, ε= -0.1, 

*ψ  = 10, and a = 2

  

- maximum deviation from the mean film thickness
 mean solid size for Kozeny model-
 mean solid size for Irmay model-
 film thickness-
 dimensionless film thickness  (=h/h )0-
 mean film thickness-

2 dimensionless film pressure [=(ph )/(μUL )]0 1-

C
Dc
Ds
H
h
h(x)
P

 lubrication film pressure-
 expected value of the lubrication film-

   pressure [= E (p)]
non-dimensional film thickness- 

   when P is maximum
 sliding velocity-

   

p
p

Q
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W

X
x,y

 non-dimensional load carrying capacity-
2 2   per unit with [= (wh )/(μUL )]0 1

 dimensionless from of (= x/L )1-
 cartesian co-ordinates-

Greek symbols
α

*α
δ 
ε

*ε

λ
μ
σ

*σ
γ,χ
ψ

*ψ  

* non-dimensional form of  (= α /h )0-
 mean of the stochastic film thickness-
 porous layer thickness-

* 3 non-dimensional form of (= ε /h )0-

 measure of the symmetry of the stochastic-
   random variable

 viscosity coefficient of (=K/μ)-
 classical viscosity coefficient-

* non-dimensional form of (= σ /h )0-
 standard deviation of the film thickness-
 viscosity coefficients for micropolar fluids-
 permeability parameter for Kozeny model-
 permeability parameter for Irmay model-


