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The convection differential models play an essential role in studying different 
chemical process and effects of the diffusion process. This paper intends to provide 
optimized numerical results of such equations based on the conformable fractional 
derivative. Subsequently, a well-known heuristic optimization technique, differen-
tial evolution algorithm, is worked out together with the Taylor’s series expansion, 
to attain the optimized results. In the scheme of the Taylor optimization method 
(TOM), after expanding the functions with the Taylor’s series, the unknown terms 
of the series are then globally optimized using differential evolution. Moreover, to 
illustrate the applicability of TOM, some examples of linear and non-linear frac-
tional convection diffusion equations are exemplified graphically. The obtained 
assessments and comparative demonstrations divulged the rapid convergence of 
the estimated solutions towards the exact solutions. Comprising with an effective 
expander and efficient optimizer, TOM reveals to be an appropriate approach to 
solve different fractional differential equations modeling various problems of en-
gineering.
Key words: conformable fractional derivative, Taylor’s series, optimization

Introduction

Modeling dissimilar real-world phenomena using fractional definitions have become 
the most highly desiring areas of realistic sciences. For the reason that the non-local properties 
of fractional operator enable these differential models to put the information, about the recent 
and the historical situation, in a nutshell [1]. For the last decades, many enlargements have been 
made in this regard to explore enhanced definitions and properties in order to overcome the 
inadequacies of previous definitions of fractional calculus, such as, He’s fractional derivative 
[3], Atangana-Baleanu fractional derivative [4], Caputo and Fabrizio [5], conformable deriva-
tive [6], etc. Consequently, these novel aspects enrich the capabilities of fractional differential 
models in bringing diverse physical significances to light [7-9]. Hence, by means of different 
theories of fractional derivatives, the behaviors of many fractional PDE have been studied and 
various techniques have been developed [10-14] but still there are many thinks to be done in 
this direction.
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The fractional diffusion equations are mostly used in relating abnormal slowly-diffu-
sion phenomenon and describing the abnormal convection phenomenon of liquid in the medi-
um. It is broadly applied in engineering and science, as mathematical models that are used to 
replicate computing. Numerous numerical methods have been designed in this regard. In [15], 
differential transform method has been developed for fractional convection-diffusion equation. 
A new variational iteration method was applied to decipher fractional convection-diffusion 
equations in [16]. Wavelets based method has been considered in [17] to solve the space-time 
fractional convection-diffusion equations. An operational matrix of fractional-order Legendre 
functions has been employed to solve the time fractional convection diffusion equation in [18]. 
Furthermore, a lot of work has been discussed for the solution of fractional diffusion equations 
[19-22].

In this manuscript, employing useful properties of Taylor’s series with the heuristic 
optimization techniques, we consider the following types of time fractional convection-diffu-
sion equation:

	 ( ) ( )
2

2 , , , 0, 0 1z z zA N z G x a x b
x x

λ

λ τ τ λ
τ
∂ ∂ ∂

= − + + ≤ ≤ ≥ < ≤
∂ ∂ ∂

	 (1)

subject to the initial-boundary conditions:

	 0 0 1( ,0) ( ), ( , ) ( ), ( , ) ( )z x q x z a s z b sτ τ τ τ= = = 	 (2)

where ( )N z  is a non-linear operator representing the potential energy, A is a fixed parameter, 
and λ  denotes the fractional order derivative. The physical understanding of eq. (1) in thermal 
engineering represents temperature or species concentration of the heat or mass transferred in-
side the system due to diffusion and convection term.

In literature, the heuristic optimization techniques have leaded the way to obtain solu-
tions of fractional differential equations. These global optimizing programs play a crucial part 
in assessing quick and accurate approximate solutions of the differential models, in graphical as 
well as in tabular representation. Here, we have utilized differential evolution (DE) algorithm 
[22-24], which is related to the natural processes and genetics of populations. For the most 
important part of DE algorithm is that it requires objective functions and its derivatives to be 
continuous and makes a high number of evaluations of the objective function. Thus, for the 
governing problem, an error function is constructed by means of Taylor’s series expansion of 
the related functions as the objective function. 

The Taylor’s series expansion, having the effective ability to approximate the func-
tions more accurately than other polynomial approximations. It has been widely used to acquire 
the solutions of an integer as well as fractional differential equations [25-26]. The amalgama-
tion of Taylor’s series expansion and DE algorithm, name as TOM, considered in this attempt, 
exhibits a remarkable tool to acquire the effective solutions of functions together with the glob-
ally optimized values of the error function. In addition to this, the illustrative examples, con-
sidered with conformable fractional derivative [5, 6, 10], elevated the efficiency, stability and 
appropriateness of TOM.

Fractional background

Conformable fractional derivative

For any function :[0, )z ∞ →ℜ, the conformable fractional derivative of order α  is 
given [5]:
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for all 0τ > , (0,1]α ∈ . In addition, if, is ( 1)α +   -differentiable and continuous at, then four 
( , 1]α α α∈ +       :

	 ( )
( ) ( )( ) ( ) ( )1 1

0
lim

z z
z

α α α α

α

τ τ τ
τ

− − −          

→

+ −
=






T 	 (4)

For further details and proofs, one would see [5, 6].

Taylor optimization method

Consider a continuous and differentiable function ( , ) :z x τ ℜ→ℜ, define over an in-
terval [0,1) [0,1)× , then for any integer 0ϑ >  the subsequent equality holds:

	 ( ) ( )0 1 1, ,z x w v x w AF xτ τ τ= + + + 	 (5)

where ( ) ( , )k
k xv z x τ=  and ( ) ( , )k

kw z xτ τ=  are the thk  order derivative (for 1,2,...,k N= ) of ( , )z x τ  
at 0x =  and 0τ = , respectively, and
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which represents the truncated Taylor’s series.
Here, we concern with the non-linear fractional initial-boundary value problem, eqs. 

(1) and (2), with conformable fractional definition with fractional order 0 1λ< ≤ :

	 ( ) ( ),xx xz z z N z G xλ τ= − + +T 	 (6)

where λT  represents the conformable fractional operator. This model has significant impor-
tance in many physical situations [15-17]. Hence, the graphical interpretations and optimized 
solutions of the non-linear fractional model of eq. (6) is the focal point of this attempt. Hence, 
in order to assess the solutions, we employ the Taylor’s optimization method. This method ini-
tiates with the construction of trial solutions of the unknown functions, on using truncated 
Taylor’s series expansion as defined in eq. (5) with the given initial conditions. Thus, the trial 
solutions trialˆ ( , )z x τ  of eq. (6) can be expressed:

	 ( ) ( )trial 0 1 1ˆ , , ,z x w v x w AF xτ τ τΦ = + + + 	 (7)

where 0w , 1v , and 1w  are the initial and boundary values and Φ is a vector of andk kv w  which 
are defined as the thk  derivative of thN  function at 0x =  and 0τ = , that are to be determined. 
Now, to compute the remaining terms of Taylor’s series expansion for each of these trial solu-
tions, we set up an error function, which is then optimized by using an optimizing technique.

In this endeavor, for the optimization purpose the DE algorithm is utilized. This effec-
tive heuristic optimizing technique was proposed in [23]. Among many other global optimizers, 
DE is considered to be more significant for its simplicity and strong population-based stochastic 
search technique over a continuous domain. The key features of DE are the three control param-
eters, i. e., the population size NP, cross-over constant CR and the scaling factor Sf . These 
parameters may extensively affect the optimization performance of the DE, therefore, in  
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[22-24] some simple rules are defined for the selection of these parameters. The DE algorithm 
maintains the population of NP-dimensional parameter vectors, known as individuals, which 
makes new applicant solutions by taking the parent individual and several other individuals of 
the same population. Using the mutation operation, it randomly picks the generated vectors 
from the population to produce a mutant vector, which is said to be the target vector. The initial 
population is established:

	 ( )( )rand 0,1L U L
j j jv v v+ − 	 (8)

After the completion of mutation operation, cross-over phase is considered in which 
each pair of target vector is taken with its corresponding mutant vector to generate a trail vec-
tor. After the cross-over operation, selection of the function value is performed by comparing 
the function value of each trial vector to that of its corresponding target vector in the current 
population. If the function value of each trial vector becomes less than or equal to the target 
vector, then the trial vector will change the target vector and comes in the population of the next 
generation. The selection operator process can be expressed:

	 ( )
( ) ( ) ( )
( ) ( ) ( )
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if
i i i

i
i i i
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v t
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	 (9)

where ( )iu t  and ( )iv t  are the trial and target vectors, respectively, and F is the objective func-
tion. The process is considered to be convergent if the best function values, in the new and old 
populations, with the new best point and the old best point, have less difference than the toler-
ance level.

Thus, in DE algorithm, the solutions are easily obtained by just specifying the popu-
lation set, trial solution and the objective function. For the governing problems, the objective 
function is defined by using the error functions, E, for the conformable fractional operator:

	 E
•

′′ ′= − + − + +TZ Z Z N G 	 (10)
where dot and prime represent the partial derivatives of the functions with respect to τ  and x , 
respectively, which can be expressed in matrix form:
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And the selection operator process is expressed:

	 ( )2
2

1 min 10E
m

η−≤

for the population set (0, ]m , where η is any positive integer.

The algorithm

Accordingly, the algorithmic process of TOM for immediate implementation on con-
vection advection eq. (1) is outlined:

	 ( ) ( ) ( )1 1, , ,z x z x v x w AF xτ τ τ τ= + + +

Step 1. (i) Set 2N ≥ . (ii) Find 0 1 1, ,w w v  by using 0 0 ( ),z q x=  0 1( ), ( ),a bz s z sτ τ= =  and 
(iii) Construct the trial solution:

	
( ) ( ) ( )

( ) ( ) ( ) ( )

trial 0ˆ , , 0, ,0

0, , ,0 , ;b a

z x z AF AF x
x z z AF AF b AF x AF x
b

τ τ

τ τ τ

Φ = − − +

+ − − − + + Φ  

Step 2. (i) Set 0 1λ< ≤  and (ii) compute all the components of given advection, i. e.

	 1
trial trial trial trialˆ ˆ ˆ( , , ) ( , , ), ( , , ) ( , , )xx xx x xZ x D z x Z D z x Z D z xλ

λ ττ τ τ τ τ−Φ = Φ = Φ = ΦT 	

Step 3. (i) Set sampling points:

	 ( ) , 0,1, ,i i
b a ix i m

m
τ −

= = =   for m N≥   and

(ii) Substitute computed component and the trial solution in error function, defined in eq. (10):

	 ( )
( ) ( )

( ) ( ) ( )

21
trial trial

2
1 trial trial
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∑

Step 4. Input: Fit the error functions in the DE algorithm. On some manipulation, ef-
fective values of each terms of Φ along with a global minimum value of mean square of error 
functions are attained by using MATHEMATICA software.

Output: Global minimum value of E and the values of all unknown terms in Φ .
Step 5. Input: Substitute the values of Φ in trial solutions trialˆ ( , )z x τ .
Output: Approximate solutions of trialˆ ( , )z x τ .

Testing the algorithm

Test problem 1. Consider the initial-boundary problem of time-fractional convec-
tion-diffusion equation [15, 16] defined in eq. (1) with:

	 ( ) ( ) 20, , , 2 2 2, 0 1, 0 1N z A x G x x xλτ τ τ= = = + + < < < < 	 (11)

and initial-boundary conditions:

	 ( ) 2,0z x x= ,   ( ) ( )
( )

21
0, 2

2 1
z t λλ

τ
λ

Γ +
=

Γ +
,   ( ) ( )

( )
21

1, 1 2
2 1

z t λλ
τ

λ
Γ +

= +
Γ +

	 (12)

Here, ( )Γ ⋅  is the gamma function. The exact solution of eq. (11) is given:
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Taking 6N =  trial solution of eqs. (11) and (12), can be computed by setting:

	 ( )
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2 2 2
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1 1
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The constructed trial solution of eqs. (12) and (13) can be written:

	
( ) ( ) ( ) ( )

( ) ( ) ( )

2
trialˆ , , 0, ; ,0; , ;

 1 0, ; , ; ,0;
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b
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τ τ
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+ − Φ − Φ + Φ  
	 (14)

Equation (14) helps us to compute all components of eq. (6). Using definition given in 
section Conformable fractional derivative, and substitute all of these in the residual error function:
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( ) ( ) ( )
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∑ 	 (15)

where , [0,1]∈i ixτ . Now, on implementing DE algorithm the mean square error in eq. (15) is 
globally minimized and approximate solution is obtained. Here, we consider six terms of Tay-
lor’s series expansion, i. e. 6N = , and population size 20NP = , from the population set [0,1], 
to acquire the graphical and tabulated solutions of trialˆ ( , )z x τ  at various values of λ . Sequential-
ly, fig. 1(a) displays the comparison of the exact solution with an approximate solution of 

trialˆ ( , )z x τ  with conformable fractional operator 1λ = . The absolute error of the function 
trialˆ ( , )z x τ  is plotted in fig. 3(a). Additionally, comparative explanation of the proposed algorithm 

with the previous method [15] is exhibited in tab. 1 for different values of λ . Moreover, some 
numerical approximations are also plotted in fig. 2(a) for different values of λ , in order to 
demonstrate the effects of fractional operator on the solution.

     (a)

   

(b)

z(x,τ)      z(x,τ)      

τ τ

x x

TOM  at  λ = 1

Exact

TOM  at  λ = 1

Exact

Figure 1. Solution of ( , )z x τ  (a) test problem 1 and (b) test problem 2 (for color image see journal web site)

Test problem 2. We consider the homogeneous fractional convection-diffusion equa-
tion [16,18] with the following values of the functions and the parameters:
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Table 1. Comparison of ˆ( ,1)z x  and the method in [11] for test problem 1

x λ = 1 λ = 0.9 λ = 0.7
TOM [11] TOM [11] TOM [11]

0.25 1.05279 1.0625 1.39648 1.20986 1.61654 1.52549
0.35 1.11316 1.1225 1.46966 1.26986 1.69338 1.58549
0.55 1.29666 1.3025 1.61686 1.44986 1.87376 1.76549
0.75 1.56032 1.5625 1.80556 1.70986 2.0973 2.02549
0.85 1.72151 1.7225 1.92625 1.86986 2.23005 2.18549

1 2 2 2.14736 2.14736 2.46299 2.46299

(a) (b)

z(x,1)      z(x,0.5)      

xx

λ = 1

λ = 0.9

λ = 0.7

λ = 1

λ = 0.5

0.0                  0.2                  0.4                 0.6                  0.8                  1.0 0.0                  0.2                  0.4                 0.6                  0.8                  1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

2.0

1.8

1.6

1.4

1.2

1.0

Figure 2. Diffusion behaviors at 0.5τ =  (a) test problem 1 and (b) test problem 2
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Figure 3. Absolute error at 1λ =  and 0.5τ =  (a) test problem 1 and (b) test problem 2

	 ( ) ( ) ( )2 , 1, , 2 2 1 , 0 1, 0 1= − Α = = − + Γ + < < < <xN z z z xz G x x xτ λ τ 	 (16)

with initial and the boundary conditions:

	 ( ) 2,0z x x= ,   ( )0,z λτ τ= ,   ( )1, 1z λτ τ= + 	 (17)

The exact solution of the problem is 2( , ) = +z x x λτ τ . Taking 6N =  the trial solution 
of eqs. (16) and (17), can be computed by setting 2

0 ( ) , ( ) , ( ) 1 ,= = = +a bz x x z t z tλ λτ τ and we 
have the same trial solution in eq. (14).

After substituting all components of eq. (6) the residual error function:
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 − Φ + Φ − Φ =  
 − Φ + Φ +   

∑ 	 (18)

The time-fractional convection-diffusion equation mentioned in eq. (14) have also 
been studied in [18], where fractional order Legendre function method is utilized to attain the 
approximate solution. Here, we use TOM to attain the optimum solutions at different values 
of λ . Figure 3(a) reveal the significant precision of approximate solution with the exact solution.
Following the schematic algorithm, the measured numerical solutions of trialˆ ( , )z x τ , at different 
values of λ  are shown in fig. 3(b). Additionally, comparative explanation of the proposed algo-
rithm with the previous methods [16, 18] is exhibited in tab. 2.

Table 2. Comparisons of ˆ( ,0.5)z x  and the methods in [10, 12] for test problem 2

x λ = 1 λ = 0.7 λ = 0.5
TOM [12] [10] TOM [10] TOM [12] [10]

0.25 0.56532 0.5625 0.5625 0.69637 0.678072 0.79899 0.76960 0.769607
0.35 0.62478 0.6225 0.6225 0.76118 0.738072 0.86463 0.82960 0.829607
0.55 0.80326 0.8025 0.8025 0.94475 0.918072 1.04435 1.00961 1.00961
0.75 1.06248 1.0625 1.0625 1.19911 1.17807 1.2913 1.26961 1.26961
0.85 1.22245 1.2225 1.2225 1.35259 1.33807 1.44222 1.42961 1.42961

1 1.5 1.5 1.5 1.61557 1.61557 1.70711 1.70711 1.70711

Table 3. Glob al optimum error values for 
20NP =  and 6N =

λ Test problem 1 Test problem 2
1.0 1.3408·10–27 3.5790·10–11

0.9 2.7722·10–20 7.3678·10–10

0.7 6.1530·10–16 1.2063·10–10

0.5 2.6231·10–13 1.5315·10–9

Conclusions

In this work, time-fractional convection diffusion equations were analyzed with con-
formable fractional derivatives. We deliberated the optimized solutions by means of TOM. The 
manifestation given in section Taylor optimization method and the ascertained values of 10 kE −≤  
for positive integers 1,2...27k =  in tab. 3 signify the worth mentioning accuracy of the proposed 
approach. Thus, from the facts and figures, it is possible to conclude as follows.

yy Modeling with conformable fractional de-
rivative supported the physical meaning of the
governing model and provided a new purse for
modelling many problems of applied sciences.

yy Just depending on the basic limit definition
of the derivative, conformable fractional deriv-
ative is simple and can be easily used to execute
fractional behaviors of the functions.

yy To calculate the unknown terms of Taylor’s series expansion, the optimizing algorithms give 
effective results by simply optimizing the error functions.

yy As shown in tab. 3, the population based optimizing algorithm DE, gives the global opti-
mum values of mean square errors of the test problems at different fractional values in a 
continuous domain, which verifies the appropriateness of approximated functions of the 
governing models.

Nomenclature
AF(x,τ)	 –	 truncated Taylor’s series
E(Φ)	 –	 the residual error

m	 –	 real numbers
N(z)	 –	 potential energy
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vk, wk	 –	 weight vector
xi, τi	 –	 sampling points

trialˆ ( , )z x τ 	 –	 trial solution

Greek symbols

η	 –	 positive integer
λ	 –	 fractional order derivative

αT 	 –	 conformable fractional operator
Φ 	 –	 vector 
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