
Nie, S., et al.: Fractal Derivative Model for the Transport of the Suspended Sediment ... 
THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S109-S115 S109

FRACTAL  DERIVATIVE  MODEL  FOR  THE  TRANSPORT  OF  THE  
SUSPENDED  SEDIMENT  IN  UNSTEADY  FLOWS

by

Shiqian NIE  a,b, Hong Guang SUN  b*, Xiaoting LIU  b,  
Ze WANG  b, and Mingzhao XIE  c

a College of Water Conservancy and Hydropower Engineering, Hohai University,  
Nanjing, Jiangsu, China 

b Department of Engineering Mechanic, Institute of Hydraulics and Fluid Mechanics, 
College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu, China 

c College of Environment, Hohai University, Nanjing, Jiangsu, China

Original scientific paper 
https://doi.org/10.2298/TSCI170717276N

This paper makes an attempt to develop a Hausdorff fractal derivative model for 
describing the vertical distribution of suspended sediment in unsteady flow. The 
index of Hausdorff fractal derivative depends on the spatial location and the tem-
poral moment in sediment transport. We also derive the approximate solution of 
the Hausdorff fractal derivative advection-dispersion equation model for the sus-
pended sediment concentration distribution, to simulate the dynamics procedure of 
suspended concentration. Numerical simulation results verify that the Hausdorff 
fractal derivative model provides a good agreement with the experimental data, 
which implies that the Hausdorff fractal derivative model can serve as a candi-
date to describe the vertical distribution of suspended sediment concentration in 
unsteady flow. 
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Introduction

In the past few decades, the vertical distribution of suspended sediment concentration 
in unsteady flows has been an important topic in sediment transport mechanics [1-4]. Numerous 
literatures related to the vertical distribution of the suspended sediment concentration in un-
steady flow, have been reported. Rouse [5] proposed a famous formula for vertical distribution 
of sediment concentration in steady flow, based on turbulent diffusion theory. Van Rijn [6] pre-
sented a 2-D vertical mathematical model for suspended sediment, which has been developed 
as a tool for routine morphological computations in the daily engineering practice. Then some 
scholars have further research on vertical distribution of suspended sediment concentration in 
unsteady flow [1, 3, 4, 7-11].

The suspended sediment transport equation is derived based on turbulent diffusion 
theory, which contains the most important roles played by advection, turbulent diffusion, and 
gravitation in the suspension of sediment particles [1]. The physical mechanism of an unsteady 
sediment suspension distribution is a dynamic of vertical fluxes between downward sediment 
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settling and upward turbulent diffusion. Base on the theory of the turbulent diffusion, the verti-
cal distribution of suspended sediment is an anomalous diffusion behavior [12-14].

In the previous study, different approaches have been proposed to anomalous diffu-
sion, such as fractional derivative models [15-18], Hausdorff fractal derivative models [19-21], 
etc. Recently, fractal calculus and corresponding fractal PDE have paid increasing attention in 
various scientific fields involving heavy-tailed dynamics [20-23]. Then we employ the Haus-
dorff fractal derivative model as a local derivative model, which have been application in com-
plex system, such as anomalous diffusion [22-25], viscoelastic materials [26], heat generation 
[27], and relaxation [28]. As an alternative method, the Hausdorff fractal derivative is based on 
time-space scale transforms. And the concept of the Hausdorff fractal derivative has been pre-
sented underlying Hausdorff dimensions [19]. Previous research illustrated that the Hausdorff 
fractal derivative model was simple compared with fractional derivative model and could suit-
ably describe the complex behavior. However, the fractal structure usually changes with time 
or space and yields the anomalous diffusion behavior [29-32]. Therefore, in this study, we try to 
develop a new model to describe the vertical distribution of suspended sediment. We propose 
the time-space Hausdorff fractal derivative advection-dispersion model to depict the suspended 
sediment concentration. The index of Hausdorff fractal derivative model changes with time, 
space, corresponding to trapping effect of sediment transport and the vertical displacement of 
suspended sediment. The Hausdorff fractal derivative model provides a good agreement with 
the experimental data.

Hausdorff fractal derivative model

The definition of Hausdorff fractal derivative

When the standard integer derivative is replaced by Hausdorff fractal derivative, the 
definition of the Hausdorff fractal derivative can be stated [19]:
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where a and b represent the order of the Hausdorff fractal derivative in time and space  
(0 < a ≤ 1, 0 < b ≤ 1), respectively.

Base on the hypothesis of the fractal invariance and equivalence, the Hausdorff fractal 
derivative can be restated as normal derivative by using the metric transforms [19]:
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Hausdorff fractal derivative advection-dispersion equation

The Hausdorff fractal derivative advection-dispersion equation is an alternative ap-
proach to describe the anomalous diffusion, which can be expressed:
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where S is the suspended sediment concentration, the time Hausdorff fractal derivative term 
/S ta∂ ∂  captures the scale dependency of the sediment transport, and the space Hausdorff fractal 

derivative term /S yb∂ ∂  describes the heavy tailed transport of sediment. The sediment transport 
along the flume can be simulated by solving the governing eq. (3). The esy is a constant which 
denotes diffusion coefficient, and w – the sediment settling velocity.

The following initial and boundary condition is imposed on:

 S(y, 0) = C,   and   0 0sy y
SS
y

w e =

 ∂
− = ∂ 

,   0y h
S
y =

∂
=

∂
 

The approximate solutions are simple and accurate to evaluate and can be used to 
validate models for describing the physical problem based on advection-dispersion equation. 
According to the previous investigation on analytical solution on advection-dispersion equa-
tion, the approximate solution of eq. (3) is [33, 34]:
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Results and discussion

The numerical examples of the Hausdorff fractal derivative advection-dispersion 
model i. e., model (3), with a constant time index a and a constant space index b are shown 
in figs. 1 and 2. The time Hausdorff fractal derivative model can describe the suspended sedi-
ment transport from sub to normal diffusion. The space Hausdorff fractal derivative model can 
describe the suspended sediment transport from normal to super-diffusion. As shown in fig. 
1(a), with the order of the time Hausdorff fractal derivative a decreasing, the diffusion rate 
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Figure 1. Dimensionless numerical results; (a) Dimensionless numerical simulation 
results of time Hausdorff fractal derivative advection-dispersion model, diffusion 
coefficient εsy = 1.0, the settling velocity ω = 1.0, and space Hausdorff fractal derivative 
order β = 1.0, y = 10, (b) Dimensionless numerical simulation results of space Hausdorff 
fractal derivative advection-dispersion model, diffusion coefficient εsy = 1.0, the settling 
velocity ω = 1.0, and time Hausdorff fractal derivative order α = 1.0, t = 12
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of sediment change slower than normal diffusion, the curve of sediment contribution changes 
from steep to slow. It can be explained that the time correlation of Hausdorff fractal advec-
tion-dispersion equation can describe the memory effect of anomalous sediment transport. That 
the sediment contribution at all time in history have influence on current sediment contribution. 
The heavy tail of the sediment contribution curve is more evident with the order of the time 
Hausdorff fractal derivative a is smaller. 

The turbulent diffusion increasing is caused with of the order of the space Haus-
dorff fractal derivative b decreasing. It illustrates that the space Hausdorff fractal derivative 
advection-dispersion equation can describe the vertical distribution of sediment concentration 
caused by the fast displacement of turbulent super-diffusion. In fig. 1(b), with the order of space 
Hausdorff fractal b decreasing, the diffusion rate of sediment change faster than normal diffu-
sion. Since the turbulent diffusion increasing with the order of the space fractal derivative b 
decreasing. It can be explained that the smaller space fractal derivative b , the stronger turbulent 
diffusion, and it exhibits super-diffusive behavior.

As shown in fig. 2, in the time-space 
fractal Hausdorff derivative model, anoma-
lous behavior in space is obvious in early 
time, the diffusion is faster than normal dif-
fusion with the space fractal derivative or-
der b decreasing, which displays the su-
per-diffusion in the initial interval (0,1.5]t ∈
. But (2,20]t ∈ , the memory effect is obvi-
ous as time increasing, the diffusion is slow-
er than normal diffusion with the time frac-
tal derivative decreasing, which exhibits the 
sub-diffusion. Therefore, in the time-space 
Hausdorff fractal derivative advection-dis-
persion model, the anomalous diffusion is 
accelerated or slowed down, it needs for 
specific practical problems.

To investigate the efficiency of the 
present the fractal Hausdorff derivative ad-
vection-dispersion model, we compare its 
sediment profiles with the experimental 

data. In this study, the numerical results are compared with the experimental data from the Lab-
oratory of Institute of Hydraulic Engineering and Water Resources Management, in their exper-
iments, the mean concentration of sediment are 3 g per liter and 20 g per liter. The more data we 
could collect, the more accurate the parameters of fractal derivative model will be. Because the 
experiment data are not enough to obtain sufficiently accurate parameters of the Hausdorff frac-
tal derivative model, we compare the Hausdorff fractal derivative model with experimental 
data, which best fits the experimental profiles to obtain the parameters of fractal derivative 
model. Figure 3 shows the best-fit results with experimental data. Figure uses the data from the 
experiments to calibrate the value of the Hausdorff fractal derivative orders a and b. As shown 
in fig. 3, the Hausdorff fractal derivative model gives a better agreement with experimental data 
except for 3 g per liter in (900,1500]t ∈  the profile of suspended sediment. Maybe the incon-
sistency is caused by the error of measured data. In fig. 3, we can obtain the space derivative 
value of 20 g per liter is smaller than 3 g per liter, because the fast displacement is strong com-
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Figure 2. Dimensionless numerical simulation 
results of time-space Hausdorff fractal derivative 
advection-dispersion model, diffusion coefficient  
εsy = 1.0, the settling velocity ω = 1.0, y = 10
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pare with history-dependency in high concentration, it exhibits super-diffusion processes. In 
contrast, the time derivative value of 3 g per liter is smaller than 20 g per liter, because the fast 
displacement is less than history-dependency in low concentration, it exhibits sub-diffusion 
processes. So it indicates that the Hausdorff fractal derivative advection-dispersion model can 
reliably describe the sediment transport in experiments, via fitting parameters a and b.

In summary, Model (3) captures the trapping effect of suspended sediment transport 
using the time Hausdorff fractal derivative term with an index a, and characterizes the fast 
displacement of the suspended sediment using the space Hausdorff fractal derivative term with 
an index b. By adjusting the two indices in the Hausdorff fractal derivative advection-disper-
sion model, we can conveniently capture various anomalous behaviors for suspended sediment 
transport in unsteady flow.

Conclusion

This study makes an attempt to develop a Hausdorff fractal derivative advection-dis-
persion model to characterize the suspended sediment transport. An approximate solution is 
obtained to simulate the suspended sediment transport in unsteady flow. According to the com-
parison results, the Hausdorff fractal derivative model can well capture the main features of 
anomalous sediment transport and give a good agreement with the experimental data. Time 
and space Hausdorff fractal derivative orders a and b are two key parameters to characterize 
the history-dependency and fast displacement of the suspended sediment transport in unsteady 
flow. However, the advantages and application potentials of the Hausdorff fractal derivative 
model should be further investigated through more theoretical discussions and experimental 
verification.
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 Figure 3. Numerical results of the Hausdorff fractal derivative model in describing the 
experimental data; [11] (a) S = 20 g/L, D =1.4 cmβ/minα, ω = 1.5 cm/minα, y = 19.5 cm,  
(b) S = 3 g/L, D = 1.2 cmβ/minα, ω = 1.5 cm/minα, y = 19.5 cm
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