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In this article, Laplace homotopy analysis method in order to solve fractional heat-
like equation with variable coefficients, are introduced. Laplace homotopy analy-
sis method, founded on combination of homotopy methods and Laplace transform 
is used to supply a new analytical approximated solutions of the fractional partial 
differential equations in case of the Caputo-Fabrizio. The solutions obtained are 
compared with exact solutions of these equations. Reliability of the method is given 
with graphical consequens and series solutions. The results show that the method 
is a powerfull and efficient for solving the fractional heat-like equations with vari-
able coefficients.
Key words: Laplace homotopy analysis method, fractional heat-like equations, 

Caputo-Fabrizio derivative, approximate solution

Introduction 

In the last few years, respectable concern in fractional calculus applied in numer-
ous studies, such as regular variation in thermodynamics, biophysics, blood flow phenomena, 
aerodynamics, viscoelasticity, electrical circuits, electro-analytical chemistry, biology, control 
theory, etc. [1-4]. Besides there has been a significant theoretical development in fractional dif-
ferential equations and its applications [5-10]. On the other hand, fractional derivatives supply 
an important implement for the definition of hereditary characteristics of different necessaries 
and treatment. Some scientists have been interested in improving new definition of fractional 
derivative. These derivative definitions change from Riemann-Liouville derivative to the Ca-
puto-Fabrizio derivative introduced by Caputo and Fabrizio [11-19]. They are claimed that the 
new derivative has interesting properties than the former derivatives. Their derivative does not 
run into an any singularity, thus a new fractional order derivative without a singular kernel can 
efficiently describe the effect of memory and also able to portray material heterogeneities and 
structures in different cases, which are physically symbolized by distinction or variation of the 
average.

In this paper, we apply the Laplace homotopy analysis method (LHAM) to find ana-
lytical approximated solution for fractional heat and wave like equations using in case of every 
two fractional operators. The LHAM is a combining of the semi analytical method projected 
by Liao and the Laplace transform [20, 21]. Some writers have projected various systems for 
fractional PDE with every two fractional operators. In [22], Dehghan practiced the HAM to 
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solve fractional PDE with in case of Liouville-Caputo. In [23], is studied a fractional differen-
tial equation with a changeable coefficient. Jafari et al. [24] applied the HAM in order to solve 
the high orderly fractional differential equation analyzed by Diethelmand and Ford [25]. In 
[26], is produced a mathematical analysis of an example studied the Caputo-Fabrizio fractional 
derivative, where analytical and calculation advances are fined. Morales-Delgado et al. [27] 
presented LHAM to supply new solutions in case of every two fractional operators. Other ana-
lytical advances that could be of concern are introduced in [28-31].

In this work, we think the following the 3-D fractional heat- and wave-like equations 
with the initial conditions of the shape [32]:
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	  ( , , ,0) = ( , , ), ( , , ,0) = ( , , )Ξ Θtu x y z x y z u x y z x y z 	 (2)

where α  is a parameter defining the fractional derivative and tu  is the value of variety of tempera-
ture at a point over time. The = ( , , , )u u x y z t  is temperature as a function of time and space, while 

,xxu  yyu , and zzu  are the second spatial derivatives (caloric conductions) of temperature in  x-, y-, 
and z-directions, respectively. In addition to, ,f  g , and h  are any functions in ,x y, and z .

In case 0 < < 1α , eq. (1) give the fractional heat-like equation with variable coeffi-
cients. And in case 1 < < 2α , eq. (1) give the fractional wave-like equation which styles abnor-
mal diffusive and subdiffusive systems, definition of fractional casual walk, unification of dif-
fusion and wave propagation process [33-36]. Recently, in [37], eq. (1) was applied to types in 
some domains like fluid mechanics. In [38], scientists applied variational iteration method in 
order to find approximation solutions of 1-D of eq. (1). In [32, 38, 39], writers studied the 
multi-dimensional time fractional heat-like equations by using LHAM.

Basic definitions of fractional calculus theory

We first illustrate the main descriptions and various features of the fractional calculus 
theory [2] in this section.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ( 0)≥α  
is defined:
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Definition 2.2. The Caputo fractional derivatives of order α  is defined:
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where Dm is the classical differential operator of order m.
For the Caputo derivative we have:
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The efficacy of this definition is confined to functions u such that ( )
1( , )∈mu L a b .

If ( )
1( )+∈ 

mu L  and if u(m)(t) is of exponential order vm, with vm > 0, = 0,1,2,..., 1∀ −m n , 
the form advised in the sources [11]:

	 { }C 1 ( 1)
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1[ D ]( )d = [ ( , )]( ) ( ,0) ... ( ,0)m m m
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for ( ) > ,Re z l  = max{ : = 0,1,2,..., 1}.−ml v m n
Then,
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Therefore, in eq. (4) if transformations happen:
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the new definition of fractional operator is expressed by Caputo and Fabrizio [11, 31].
Definition 2.3. Let 1( , )∈u H a b , the new fractional Caputo derivative is defined:
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The ( )M α  is a standardization function that (0) = (1) = 1M M  [11]. Then eq. (7) does 
not have singularities at = .t z

But if 1( , )∉u H a b , eq. (7) can be re-writen:
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Definition 2.4. The fractional integral of order α  of u  is defined:
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where 0 < < 1.α
Remark [12]. According to the Definition 2.4, the fractional integral of Caputo type of 

function of order 0 < < 1α  is a medial between function u and its integral of order one.
Thus
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The previous formulation gives an expressed for:
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Therefore, in [12] is rewrote the recent fractional Caputo derivative:
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Theorem 1. (see [11,12] for proof) If the function u(z) as:

	 ( ) = 0, = 1,2,...,iu a i n 	
in the new fractional Caputo derivative, therefore, we write:

	 [ ]{ } [ ]{ }D D ( ) = D D ( )n n
t t t tu z u zα α 	

Definition 2.5. After Definition (2.3), if (0,1]∈α  and ∈n , we can define the Laplace 
transform in case of C-F [11, 32]:
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From eq. (11),
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The LHAM for fractional heat- and wave-like equations  
with the operator of Caputo-Fabrizio
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the initial conditions are:
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where > 0,s  [ ( , , , )]( ) = ( , , , ),ΨL u x y z t x y zζ ζ  then eq. (16):
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in eq. (17), ( , , , ) = [ ( , , , )]Ψ x y z L u x y z tζ  and
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eq. (18) is the solution of eq. (17).
Substituting eq. (18) into eq. (17), we obtain:
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from the coefficients of powers of p:
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and eq. (19) yields the approximate solution of eq. (17):
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if we apply the inverse of the Laplace transform of eq. (20), we can write solution of eq. (14):
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where ( , , , )nS x y z t  is the nth partial sum of the infinite series of approximate solution [31], then 
the relative error, (%)RE , is calculated:
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The 2-D fractional heat-like equation

In this part, fractional heat-like equations are solved using the Caputo-Fabrizio frac-
tional operators in order to demonstrate the effectiveness of the LHAM, in addition the conver-
gence and stability of the method are discussed.

Consider the 2-D fractional heat-like equation in case of the Caputo-Fabrizio:
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by the initial condition:

	 ( , ,0) = sin( )sin( )u x y x y 	 (23)

Now, using the LHAM, we have:
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the approximate solution is:
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we have:
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The result given in figs. 1-3, they shows that our approximate solutions are in good 
agreement with the exact values.



Korpinar, Z., et al.: On Numerical Solutions for the Caputo-Fabrizio Fractional Heat-Like Equation 
THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S87-S95	 S93

x

t

u3

–5

0

5 0.0

0.5

1.0

–0.5
0.0

0.5

Figure 1. The surface graph of 
exact solution of the 2-D fractional 
heat-like equation ( = 2 /3y π )

Figure 2. The surface graph of 
3( , , )u x y t  approximate 

solutions of the 2-D fractional 
heat-like equation in case of the 
Caputo-Fabrizio ( = 2 /3y π );  
(a) 3( , , )u x y t  when = 0.01α , 
(b) 3( , , )u x y t  when = 0.1α ,  
(c) 3( , , )u x y t  when = 0.5α ,  
(d) 3( , , )u x y t  when = 0.9α
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Conclusions

In this study the LHAM has utilized in order to find approximate analytical solution of 
2-D fractional heat-like equation in case of the Caputo-Fabrizio. We have compared the approx-
imate solutions received in the sight of LHAM with those outcomes received from the exact 
analytical solutions. This operation indicates an accurate understanding between the LHAM 
and exact outcomes. From the outcomes, it is clear that the LHAM yields very accurate and 
convergent approximate solutions using only a few iterates in fractional problems. Because the 
Laplace transform permits one in many positions to get over the deficiency chiefly produced by 
unsatisfied boundary or initial conditions, the LHAM is a strong new method which requires 
inferior calculation time and is much easier and more useful than the HAM. The work empha-
sized our belief that the present method can be applied as an alternative to get approximate 
analytic solutions of different kinds of fractional linear and non-linear PDE in Caputo-Fabrizio 
fractional derivative sense applied in mathematics, physics and engineering.
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