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In this paper, time-fractional non-linear partial differential equation with propor-
tional delays are solved by fractional variational iteration method taking into ac-
count modified Riemann-Liouville fractional derivative. The numerical solutions 
which are calculated by using this method are better than those obtained by ho-
motopy perturbation method and differential transform method with same data set 
and approximation order. On the other hand, to improve the solutions obtained 
by fractional variational iteration method, residual error function is used. With 
this additional process, the resulting approximate solutions are getting closer to 
the exact solutions. The results obtained by taking into account different values of 
variables in the domain are supported by compared tables and graphics in detail.
Key words: modified Riemann-Liouville derivative, proportional delays,  

time-fractional pde, fractional variational iteration method

Introduction

Fractional differential equations become a fundamental tool to understand real life 
problems and it is used at almost all disciplines. There are various studies on fractional differ-
ential equations [1]. Some of these equations are formed by replacing the positive integer order 
derivatives with modified fractional derivatives, so it is aimed to find out what the behavior is. 
In order to determine the solutions that guide the behavioral state, those are solved numerical-
ly. The most realistic models of ODE do not have analytic solutions so that the numerical and 
approximation methods should be used in order to solve such problems [2]. The variational 
iteration method (VIM) is also applied successfully to both numerous linear and non-linear 
fractional order problems by many authors [3-5]. Besides that, there are also several methods 
used in order to solve the non-linear problems. But, most of the authors claimed that VIM and 
the numerical results demonstrate that the VIM is relatively accurate and also easily implement-
ed method such as Adomian decomposition method, differential transform method (DTM) and 
some other methods [6, 7]. On the other hand, fractional PDE that appear in many physical phe-
nomena are also studied by some researchers using some treated types of VIM [8-13]. Partial 
functional-differential equations with proportional delays represent a particular class of delay 
PDE and also these are solved by several authors such as [14, 15].
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On the other hand Polyanin and Zhurov [16] suggested a method for constructing ex-
act solutions to non-linear delay reaction-diffusion equations. Additionally Abazari and Ganji 
[17] proposed 2-D DTM and its reduced form to obtain the solution of PDE with proportional 
delay. Then Sakar et al. [18] proposed homotopy perturbation method (HPM) for numerical 
solutions of these kinds of special equations. 

In this paper, we examine non-linear fractional PDE which have proportional delays. 
Previously, Ghaneai et al. [19] applied modified VIM to non-linear PDE, Abazari and Ganji 
[17] studied these kind of fractional equations by using extended DTM and Sakar et al. [18] 
applied HPM taking into account Caputo derivative definition to aforementioned equations. 
Very recently, Singh and Kumar [20] has just proposed to use an alternative VIM considering 
Caputo sense derivative. The differences of our study among previous studies are considering 
modified Riemann-Liouville derivative operator [21] firstly, improvement of the solutions with 
residual error function [22] secondly, so that having approximately at least 410−  times more 
accurate data, and finally obtaining semi-analytic solutions, that is, approximate solutions are 
functions of x  and t .

Now, let us consider following time-fractional PDE with proportional delays of the 
general form:

	 0 0 1 1D ( , ) , , ( , ),D ( , ),...,D ( , ) =  
n

t x x n nu x t f x t u p x q t u p x q t u p x q tα    0,1,2,n =  	 (1)

subject to the initial conditions ( ) ( ,0) ( )=k
ku x xη  for 0,1, ,k m=  , 1< ≤ +m mα , and 

∈m  where ( , ) [0,1] [0,1]x t ∈ × , ( )k xη  is a specified initial function, ,  (0,1)i jp q ∈  for 
,  ∈i j , α  is a parameter describing the order of the time fractional derivative and ( , )u x t  is 

the exact solution. For fractional integrals, the Riemann-Liouville fractional integral definition 
and for fractional derivatives modified fractional derivative definition [21, 23, 24] are used in 
our approach. This definition is just a modification on the definition of Riemann-Liouville de-
rivative and it is strictly equivalent to the Caputo via Riemann fractional derivative. The defini-
tions used are briefly introduced:

Definition. Riemann-Liouville fractional integral of a continuous function 2:f R R→ , 
( , ) ( , )→x t f x t  with respect to t  of order α  is:
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where Dn
t  denotes the nth partial derivative with respect to t , while DmRL

t
α  is modified Riemann 

Liouville derivative of order α  [21].
Furthermore, modified Riemann-Liouville fractional derivative is strictly equivalent 

to the Grunwald-Letnikov fractional derivative [25] and has valuable advantages according to 
both standard Riemann-Liouville and Caputo fractional derivatives. For instance, it is defined 
for arbitrary continuous (can also be non-differentiable) functions and the fractional derivative 
of a constant is equal to zero. If the function is not defined at the origin, the fractional deriva-
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tive will not exist. In order to overcome this manner Atangana and Secer [26] proposed to take 
finite part of the fractional derivative order operator which is based on the concept of finite part 
approach of Estrada and Kanwal [27]. 

With this definition some important properties can be introduced:
–– fractional integration of a fractional derivative

	 0 0 D ( , ) ( , ) ( ,0), 0 1= − < ≤RL mRL
t tI f x t f x t f xα α α 	 (4)

–– local integration

	 1
0

0 0

( , ) ( ) ( , ) ( ,1 1d )(d
) )

)
( 1(

− =
Γ Γ +

= −∫ ∫
t t

RL
t x t t x xI f f fα α ατ τ τ

α α
τ τ 	 (5)

where fractional derivative of compounded function is defined:

	 ( )d(d ) 1 0  1,≅ Γ + < <ατ ατα 	 (6)

in the view of [21, 23, 24]. 
For comparison purposes, especially, we take the derivative order (0,1]α ∈  so the 

problem that we have, now becomes:

	 0 0 1 1
( , ) , , ( , ),D ( , ),...,D ( , )∂  =  ∂

n
x x m m

u x t f x t u p x q t u p x q t u p x q t
t

α

α    0,1,2,...=m 	 (7)

subject to the initial condition ( ,0) ( )=u x xη . 

Process of fractional VIM (FVIM) for fractional PDE

According to standard VIM theory which was firstly proposed by He [28], we shall 
regenerate a corrected functional that allows us to construct an iteration formula in order to find 
fixed point of that formula. Based on this structure, the FVIM has already been presented and 
used by many authors [29-32]. 

We are dealing with problem of eq. (7), so its corrected functional is written as in the form of:

  [ ]{ }
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  	 (8)

where ( , )tλ τ , Lagrange multiplier, can be identified optimally via variational theory in which 
f  is restricted variation, so is 0=fδ  consequently. Making eq. (8) stationary yields following 

conditions:

	  0( , ) 1 0, D ( , ) 0mRLt tα
τλ τ λ τ+ = = 	 (9)

and it is easily understood that the trivial solution of those system is ( , ) 1tλ τ = − . Now our 
iteration formula is: 
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which will have a fixed point ( , )u x t  taking into account a special initial approximate function 
0 ( , )u x t  that can be freely chosen if it satisfies the initial and boundary conditions of the prob-

lem. Approximate solutions are determined:

	 ( , ) , ∈nu x t n   where  lim ( , ) ( , )
→∞

=nn
u x t u x t  	 (11)

Improvement of solutions obtained by FVIM

Improvement with residual error function

In case the exact solution of the problem is not known or can not be obtained analyti-
cally, in order to check the sensitivity of approximate solutions obtained with FVIM, we will 
use the residual error function which allows us to approach the desired solution ( , )u x t  as 

( , ) ( , )+n nu x t e x t . We will correct the approximated solution ( , )nu x t  using the residual error 
function ( , )ne x t . 

Assume that the nth order approximate solution ( , )nu x t  satisfies: 

0 0 10 1( , ) ( , ),D ( , ),...,D (D , ) ( , ) ( , )n
n n x n x

mRL
n m mt u x t f u p x q t u p x q t u p x q t g x t R x tα  − = +  	(12)

such that a residual function remains as ( , )R x t  on the right hand side of eq. (12) where ( , )g x t  
is non-homogenous function removed from f . Since ( , )u x t  is the exact solution of eq. (7), 
eq. (12) can be also written:

	 0 10 0 1( , ) ( , ),D ( , ),...,DD ( , ) ( , ) − = 
n

x x m
mRL

mt u x t f u p x q t u p x q t u p x q t g x tα 	 (13)

Subtracting eq. (13) from eq. (12) yields:
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Denoting by ( , )ne x t  the residual error function of ( , )nu x t  and taking in consideration that 
0 DmRL

t  is a linear operator we have the error differential equation with homogenous initial condition: 
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	(15)

subject to ( ,0) 0ne x = .
Solving this by a numerical method, such as FVIM, ( , )ne x t  is found numerically, 

therefore, the solution ( , )nu x t  is improved by adding that term.

Numerical experiments

In this section, time-fractional PDE with proportional delays of eq. (7) that were 
solved by using DTM [17] and earlier by HPM [18], will be considered.
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Example 1

The first time fractional PDE is:

	 ( , ) 1D ( , ) D , , ( , ) 0 1
2 2 2 2

∂    = + + < ≤   ∂    
xx x

u x t t x tu x t u x u u x t
t

α

α α 	 (16)

with initial condition ( ,0) =u x x, ( , ) [0,1] [0,1]∈ ×x t  and the exact solution is ( , ) = tu x t xe  
when 1=α , which was already solved by DTM in [17], HPM in [18]. The numerical data are 
calculated separately for four cases in accordance with the value of α  as follows:

–– Case 1=α
So the equation becomes first order PDE with respect to t  and the iteration formula 

for FVIM is constructed:

1

0
0

( , ) ( , )

1 1( , ) D ( , ) D , , ( , ) (d )
( 1) 2 2

D
2 2

n n
t

n xx n x n
mR

n
L

n

u x t u x t

xu x u x u x u u x αα
τ

τ ττ τ ττ
α

+ = −

    − − + +    Γ +     ∫ 	(17)

which will have a fixed point ( , )u x t  taking initial approximate function 0 ( , ) =u x t x . While n 
is increasing, approximate solutions of order n are indicated: 

	 1( , ) 1
( 1)

tu x t x
α

α
 

= + Γ + 
	 (18)

	
1 2 3

2 2 1 2

(2 1) (2 1)( , ) 1
( 1) 2 (2 1) 2 [ ( 1)] (3 1)

t t tu x t x
α α α α

α

α
α α α α

−

+

 + Γ +
= + + + 

Γ + Γ + Γ + Γ + 
	 (19)

and so on. From eqs. (18) and (19) 
it is seen that the exact solution 
does not have a closed form. We 
also conclude that because of 
non-linearity of the problem. From 
numerical experiments view, the 
numerical values of approximate 
solutions for certain ( , )x t  combi-
nations chosen inside the domain 
are calculated by using our Mathe-
matica algorithm. Figure 1 shows 
first four approximate solution val-
ues and curves obtained by using with present FVIM. From those, it is also seen that each 

( , )nu x t  solution is getting closer to the exact solution than 1( , )−nu x t . 
Comparison of our data with those obtained other two methods (DTM and HPM) in 

[17, 18] can be seen from tab. 1.
While in [17, 18] authors found Taylor series expansion of exact solution, with op-

timized Lagrange multiplier FVIM gives one common iteration formula that generates suc-
cessive approximate solutions without any known series format. In the fourth approximation, 

Figure 1. First four solution of FVIM for 1, 0.25xα = =

u1(0.25, t)

u2(0.25, t)

u3(0.25, t)

u4(0.25, t)

0.25et

un

t
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while the maximum error obtained with FVIM, is read from tab. 1 as 3.00515594∙10–3, the 
maximum error obtained with HPM and DTM is read 9.94849513∙10–3 as three times bigger 
from that of FVIM. Furthermore, as it is expected, the minimum error occurs near the origin in 
a subregion of [0,1]×[0,1] and is approximately 10–7.

In order to have closer numerical solutions to ( , )u x t , residual method is going to be 
applied to ( , )nu x t  obtained from FVIM. According to section Improvement of solutions ob-
tained by FVIM, error differential equation related with eq. (16):

[ ] 2
4

4 4

0 ( , ) D ( , ) D , , D , ,
2 2 2 2 2 2

1D , , ( , ) ( , )
2 2 2 2

D n x n x n n x n

x

mRL

n

t

n

t x t t x te x t e x t e x e e x u

t x tu x e e x t R x t

α        − − − −       
       

   − − = −   
   

	

subject to ( ,0) 0=ne x  where ( , ) ( , ) ( , )n ne x t u x t u x t= −  and ( , )nR x t  is residue function which: 

	
( , ) 1D ( , ) D , , ( , ) ( , )

2 2 2 2
n

xx n x n n n n
u x t t x tu x t u x u u x t R x t

t

α

α

∂    − − − =   ∂    
	 (21)

With the same process in section Process of fractional VIM (FVIM) for fractional 
PDE, eq. (20) is solved functionally then with some values of ( , )x t  fig. 2 is plotted and tab. 2 
is obtained.

–– Case 0.9=α , 0.8=α , and 0.7=α
For 0.9=α , with modified Riemann-Liouville fractional derivative definition, the 

FVIM gives semi-analytical solutions which are calculated as functions of x and t . These solu-

Table 1. Comparison fourth solution of FVIM for 1α =  with those  
obtained by HPM and DTM

x t Exact solution 
u(x, t) u4(x, t) HPM and DTM  

u4(x, t)
Abssolute 

error u4(x, t)
Abssolute error HPM and 

DTM u4(x, t) [17, 18]
0.25 0.25 3.2101∙10–1 3.2101∙10–1 3.21004∙10–1 5.7849∙10–7 2.1224∙10–6

0.25 0.5 4.1218∙10–1 4.1216∙10–1 4.12109∙10–1 2.00∙10–5 7.09427∙10–5

0.25 0.75 5.2925∙10–1 5.2909∙10–1 5.28687∙10–1 1.6439∙10–4 5.63481∙10–4

0.25 1. 6.7957∙10–1 6.7882∙10–1 6.77083∙10–1 7.5129∙10–4 2.48712∙10–3

0.5 0.25 6.4201∙10–1 6.4201∙10–1 6.42008∙10–1 1.157∙10–6 4.2448∙10–6

0.5 0.5 8.2436∙10–1 8.2432∙10–1 8.24219∙10–1 4.00∙10–5 1.41885∙10–4

0.5 0.75 1.0585 1.0582 1.05737 3.2879∙10–4 1.12696∙10–3

0.5 1. 1.3591 1.3576 1.35417 1.5026∙10–3 4.97425∙10–3

0.75 0.25 9.6302∙10–1 9.6302∙10–1 9.63013∙10–1 1.7355∙10–6 6.3672∙10–6

0.75 0.5 1.2365 1.2365 1.23633 6.00∙10–5 2.12828∙10–4

0.75 0.75 1.5878 1.5873 1.58606 4.9318∙10–4 1.69044∙10–3

0.75 1. 2.0387 2.0365 2.03125 2.2539∙10–3 7.46137∙10–3

1. 0.25 1.284 1.284 1.28402 2.314∙10–6 8.4896∙10–6

1. 0.5 1.6487 1.6486 1.64844 8.00∙10–5 2.83771∙10–4

1. 0.75 2.117 2.1163 2.11475 6.5758∙10–4 2.25392∙10–3

1. 1. 2.7183 2.7153 2.70833 3.0052∙10–3 9.9485∙10–3

(20)
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u1(0.25, t) + e4(0.25, t)

u2(0.25, t) + e4(0.25, t)

u3(0.25, t) + e4(0.25, t)

u4(0.25, t) + e4(0.25, t)

0.25et

t
0                        0.2                       0.4                      0.6                      0.8                      1.0

0.7

0.6

0.5

0.4

0.3

0

e n +
 u

n

Figure 2. First four corrected 
solution obtained by FVIM  
for 1α = , and exact solution  
of eq. (16)

Table 2. Comparison of 4( , )u x t  and 4 4( , ) ( , )u x t e x t+  improved approximate solutions of FVIM for 
1α = , and exact solution of eq. (16)

x t
Exact  

solution 
u(x, t)

u4(x, t) u4(x, t) + e4(x, t) Absolute  
error u4(x, t)

Absolute error 
u4(x, t) + e4(x, t)

0.25 0.25 0.321006354 0.321005775 0.321006354 5.78489726∙10–7 5.11743958∙10–14

0.25 0.5 0.412180317 0.412160318 0.412180317 0.0000199999535 2.76395965∙10–11

0.25 0.75 0.529250004 0.52908561 0.529250003 0.000164394395 1.12232944∙10–9

0.25 1.0 0.679570457 0.678819168 0.679570441 0.000751288985 1.58091924∙10–8

0.5 0.25 0.642012708 0.642011551 0.642012708 0.00000115697945 1.02348791∙10–13

0.5 0.5 0.824360635 0.824320636 0.824360635 0.000039999907 5.52791931∙10–11

0.5 0.75 1.0585 1.05817122 1.0585 0.000328788791 2.24465888∙10–9

0.5 1.0 1.35914091 1.35763833 1.35914088 0.00150257797 3.16183849∙10–8

0.75 0.25 0.963019063 0.963017327 0.963019063 0.00000173546918 1.53523187∙10–13

0.75 0.5 1.23654095 1.23648095 1.23654095 0.0000599998606 8.29187897∙10–11

0.75 0.75 1.58775001 1.58725683 1.58775001 0.000493183187 3.36698833∙10–9

0.75 1.0 2.03871137 2.0364575 2.03871132 0.00225386695 4.74275773∙10–8

1.0 0.25 1.28402541 1.2840231 1.28402541 0.0000023139589 2.04697583∙10–13

1.0 0.5 1.64872127 1.64864127 1.64872127 0.0000799998141 1.10558386∙10–10

1.0 0.75 2.11700001 2.11634244 2.11700001 0.000657577582 4.48931777∙10–9

1.0 1.0 2.71828183 2.71527667 2.71828176 0.00300515594 6.32367698∙10–8

t
0                        0.2                       0.4                      0.6                       0.8                      1.0

4.0

3.5

3.0

2.5

2.0

1.5

0

u4

u4[1, t] for α = 0.7

u4[1, t] for α = 0.8

u4[1, t] for α = 0.9

u4[1, t] for α = 1

Figure 3. Forth order approximate solutions 4( , )u x t  obtained  
by using FVIM for α = 0.7, 0.8, 0.9, and 1 in eq. (16)
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tions have several long terms, thus it is not written here. Instead, the obtained solutions for 
certain values are given in fig. 3 and tab. 3. 

Example 2

The time fractional PDE is:

	
( , ) D , , ( , )

2 2xx
u x t t tu x u x u x t

t

α

α

∂    = −   ∂    
    0 1< ≤α 	 (22)

with initial condition 2( ,0) =u x x , ( , ) [0,1] [0,1]∈ ×x t  and the exact solution is 2( , ) etu x t x=  
when 1=α , which was already solved by HPM in [18] and DTM in [17]. The numerical data 
are calculated separately in cases accordance with the value of α :

–– Case 1=α
So the equation becomes first order PDE with respect to t  and the iteration formula for 

FVIM is constructed:

	
0

0

1( , ) ( , )

1 ( , ) D , , ( , ) (d )
( 1) 2 2

D

n n
t

n xx n
R

n n
m L

u x t u x t

u x u x u x u xα
τ

ατ ττ τ τ
α

+ = −

    − − −    Γ +     
∫ 	 (23)

which will have a fixed point ( , )u x t  taking initial approximate function 2
0 ( , ) =u x t x . While 

n is increasing, approximate solutions of order n are indicated:

	 2
1( , ) 1

( 1)
 

= + Γ + 

tu x t x
α

α
	 (24)

Table 3. Improved approximate solutions 4( , ) ( , )nu x t e x t+  of eq. (16) obtained by FVIM  
for α = 0.7, 0.8, 0.9, and 1 

x t u4(x, t) + e2(x, t)  
for α = 0.7

u4(x, t) + e2(x, t)  
for α = 0.8

u4(x, t) + e2(x, t)  
for α = 0.9

u4(x, t) + e2(x, t)  
for α = 1

0.25 0.25 3.96187047∙10–1 3.63028376∙10–1 3.39067∙10–1 0.321006354
0.25 0.5 5.52639137∙10–1 4.90042012∙10–1 4.45572∙10–1 0.412180317
0.25 0.75 7.54664602∙10–1 6.52387429∙10–1 5.81521∙10–1 0.529250003
0.25 1.0 1.02089677 8.63263195∙10–1 7.56652∙10–1 0.679570441
0.5 0.25 7.92374094∙10–1 7.26056751∙10–1 6.78134∙10–1 0.642012708
0.5 0.5 1.10527827 9.80084024∙10–1 8.91143∙10–1 0.824360635
0.5 0.75 1.5093292 1.30477486 1.16304 1.0585
0.5 1.0 2.04179353 1.72652639 1.5133 1.35914088
0.75 0.25 1.18856114 1.08908513 1.0172 0.963019063
0.75 0.5 1.65791741 1.47012604 1.33671 1.23654095
0.75 0.75 2.26399381 1.95716229 1.74456 1.58775001
0.75 1.0 3.0626903 2.58978959 2.26995 2.03871132
1.0 0.25 1.58474819 1.4521135 1.35627 1.28402541
1.0 0.5 2.21055655 1.96016805 1.78229 1.64872127
1.0 0.75 3.01865841 2.60954972 2.32608 2.11700001
1.0 1.0 4.08358707 3.45305278 3.02661 2.71828176
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3
2 3 2 2

2
2 2 1

12
(2 2 ) 2( , ) 1

1( 1) 2 ( 1) (3 1)( 1)
2

t
t tu x t x

α
α α α α

α

α

α α αα α

− −

+

  Γ +  − π   = + + +
Γ +   π Γ + Γ + Γ + Γ +    

	 (25)

and so on. From eqs. (24) and (25) it is seen that the exact solution does not have a closed 
form. Following tab. 4 shows obtained approximate solutions and comparisons the values also 
obtained with other methods. 
Table 4. Comparison fourth solution of FVIM for α = 1 with those obtained by HPM and DTM

x t Exact solution  
ν(x,t) u4(x, t) HPM and DTM  

u4(x, t)
Absolute 

error u4(x, t)
Absolute error HPM 

and DTM u4(x, t)
0.25 0.25 0.08025158854298384 8.02516∙10–2 8.02511∙10–2 1.385∙10–8 5.306∙10–7

0.25 0.5 0.10304507941875801 1.03044∙10–1 1.03027∙10–1 8.7944∙10–7 1.77357∙10–5

0.25 0.75 0.13231250103829217 1.32303∙10–1 1.32172∙10–1 9.8961∙10–6 1.4087∙10–4

0.25 1.0 0.16989261427869032 1.69838∙10–1 1.69271∙10–1 5.4648∙10–5 6.21781∙10–4

0.5 0.25 0.32100635417193535 3.21006∙10–1 3.21004∙10–1 5.5398∙10–8 2.1224∙10–6

0.5 0.5 0.41218031767503205 4.12177∙10–1 4.12109∙10–1 3.5178∙10–6 7.09427∙10–5

0.5 0.75 0.5292500041531687 5.2921∙10–1 5.28687∙10–1 3.9584∙10–5 5.63481∙10–4

0.5 1.0 0.6795704571147613 6.79352∙10–1 6.77083∙10–1 2.1859∙10–4 2.48712∙10–3

0.75 0.25 0.7222642968868546 7.22264∙10–1 7.2226∙10–1 1.2465∙10–7 4.7754∙10–6

0.75 0.5 0.9274057147688222 9.27398∙10–1 9.27246∙10–1 7.915∙10–6 1.59621∙10–4

0.75 0.75 1.1908125093446296 1.19072 1.18954 8.9065∙10–5 1.26783∙10–3

0.75 1.0 1.5290335285082128 1.52854 1.52344 4.9183∙10–4 5.59603∙10–3

1. 0.25 1.2840254166877414 1.28403 1.28402 2.2159∙10–7 8.4896∙10–6

1. 0.5 1.6487212707001282 1.64871 1.64844 1.4071∙10–5 2.83771∙10–4

1. 0.75 2.117000016612675 2.11684 2.11475 1.5834∙10–4 2.25392∙10–3

1. 1.0 2.718281828459045 2.71741 2.70833 8.7437∙10–4 9.9485∙10–3

In order to improve semi analytic solutions ( , )nu x t , i. e., to get it closer to exact solu-
tion we will apply residual method proposed in section Improvement of solutions obtained by 
FVIM. According to this section, error differential equation related with eq. (22):

	 [ ] 2
0 4( , ) D , , ,

2 2
D

2
m

n x n n
RL

t
t t te x t e x e x u xα      − + +     

     
	

	 2
4 4( , t) x, D x, ( , )

2 2n n x
t te x e u R x t   + − = −   

   
	 (26)

subject to ( ,0) 0=ne x  where (x, t)nR  is residue function and it is: 

	
( , ) 1D ( , ) D , , ( , ) ( , )

2 2 2 2
∂    − − − =   ∂    

n
xx n x n n n n

u x t t x tu x t u x u u x t R x t
t

α

α 	 (27)

With the same process in section Process of fractional VIM (FVIM) for fractional 
PDE, eq. (26) is solved then with some values of ( , )x t  fig. 4 is plotted and tab. 5 is given.
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Table 5. Comparison of 4( , )u x t  and 4 4( , ) ( , )u x t e x t+  improved approximate solutions for α = 1,  
and exact solution of eq. (22)

x t x2et u4(x, t) u4(x, t) + e4(x, t) Absolute error of  
u4(x, t)

Absolute error of 
u4(x, t) + e4(x, t)

0.25 0.25 0.0802515885 0.0802515747 0.0802515885 1.3849596∙10–8 9.42849606∙10–15

0.25 0.5 0.103045079 0.1030442 0.103045079 8.7944039∙10–7 9.49285315∙10–12

0.25 0.75 0.132312501 0.132302605 0.1323125 0.00000989609653 5.36436724∙10–10

0.25 1.0 0.169892614 0.169837966 0.169892605 0.0000546480454 9.2993898∙10–9

0.5 0.25 0.321006354 0.321006299 0.321006354 5.5398384∙10–8 3.77139842∙10–14

0.5 0.5 0.412180317 0.4121768 0.412180317 0.00000351776156 3.79714126∙10–11

0.5 0.75 0.529250004 0.52921042 0.529250002 0.0000395843861 2.14574689∙10–9

0.5 1.0 0.679570457 0.679351865 0.67957042 0.000218592181 3.71975592∙10–8

0.75 0.25 0.722264297 0.722264172 0.722264297 1.24646364∙10–7 8.48564646∙10–14

0.75 0.5 0.927405715 0.9273978 0.927405715 0.00000791496351 8.54356784∙10–11

0.75 0.75 1.19081251 1.19072344 1.1908125 0.0000890648688 4.82793051∙10–9

0.75 1.0 1.52903352 1.52854169 1.52903344 0.000491832408 8.36945082∙10–8

1.0 0.25 1.28402541 1.28402519 1.28402541 2.21593536∙10–7 1.50855937∙10–13

1.0 0.5 1.64872127 1.6487072 1.64872127 0.0000140710462 1.5188565∙10–10

1.0 0.75 2.11700001 2.11684168 2.117 0.000158337544 8.58298758∙10–9

1.0 1.0 2.71828183 2.71740746 2.71828168 0.000874368726 1.48790236∙10–7

Example 3 

Finally, consider time fractional PDE: 

	
( , ) 1D , D , D (x, ) ( , )

2 2 2 2 8xx x x
u x t x t x tu u u t u x t

t

α

α

∂    = − −   ∂    
    0 1< ≤α 	 (28)

with initial condition 2( ,0) =u x x , ( , ) [0,1] [0,1]∈ ×x t  which was already solved by DTM in 
[17] and HPM in [18]. Its exact solution is 2( , ) tu x t x e−=  when 1=α . The numerical data 
are calculated separately at cases in accordance with the value of α  as follows:

–– Case 1=α
So the equation becomes first order PDE with respect to t  and the iteration formula 

for FVIM is constructed:

	 1 0
0

1( , ) ( , ) ( , )
( 1)

D
t

n
mRL

n nu x t u x t u xα
τα

τ+ = − −Γ + ∫ 	

Figure 4. First four corrected solution obtained by FVIM for α = 1, 
and exact solution of eq. (22)

u1(0.25, t) + e4(0.25, t)

u2(0.25, t) + e4(0.25, t)

u3(0.25, t) + e4(0.25, t)

u4(0.25, t) + e4(0.25, t)

0.252et

t
0                      0.2                    0.4                    0.6                    0.8                     1.0
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	 1D , D , D ( , ) ( , ) (d )
2 2 2 2 8xx n x n x n n
x xu u u x u x ατ τ τ τ τ   − + +        

	 (29)

which will have a fixed point ( , )u x t  taking initial approximate function 2
0 ( , ) =u x t x . While 

n  is increasing, approximate solutions of order n  are found:

	 2
1( , ) 1

( 1)
 

= − Γ + 

tu x t x
α

α
	 (30)

	

( ) ( ) ( ) ( )
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2 2

2
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( 2
1 2 1 2 1 4 2 1

1
2

, )

12 3

a
a a

a

x x x xx t t
a a a a

x a
t

u

a a

x t

a

− − 
− + − +  Γ + Γ + Γ + Γ + 

 Γ + 
 +

π Γ Γ

= +

	 (31)

and so on. From eqs. (30) and (31) it is seen that the exact solution does not have a closed form, 
tab. 6. 

Table 6. Comparison fourth solution of FVIM for α = 1 with those obtained by HPM and DTM

x t Exact solution  
u(x, t)

Present method  
u4(x, t)

HPM and DTM  
u4(x, t)

Absolute error  
u4(x, t)

Absolute error  
HPM and DTM  

u4(x, t)
0.25 0.25 0.04867504 4.8677∙10–2 4.86755∙10–2 1.9243∙10–6 4.88167∙10–7

0.25 0.5 0.03790816 3.79685∙10–2 3.79232∙10–2 6.0376∙10–5 1.50109∙10–5

0.25 0.75 0.02952291 2.99725∙10–2 2.96326∙10–2 4.4963∙10–4 1.09659∙10–4

0.25 1.0 0.02299246 2.4851∙10–2 2.34375∙10–2 1.8585∙10–3 4.45035∙10–4

0.5 0.25 0.19470019 1.94705∙10–1 1.94702∙10–1 4.4486∙10–6 1.95267∙10–6

0.5 0.5 0.15163266 1.51771∙10–1 1.51693∙10–1 1.3867∙10–4 6.00434∙10–5

0.5 0.75 0.11809163 1.19118∙10–1 1.1853∙10–1 1.0263∙10–3 4.38635∙10–4

0.5 1.0 0.091969860 9.61873∙10–2 9.375∙10–2 4.2175∙10–3 1.78014∙10–3

0.75 0.25 0.43807544 4.38083∙10–1 4.3808∙10–1 7.9494∙10–6 4.39351∙10–6

0.75 0.5 0.34117349 3.4142∙10–1 3.41309∙10–1 2.4698∙10–4 1.35098∙10–4

0.75 0.75 0.26570618 2.67529∙10–1 2.66693∙10–1 1.8223∙10–3 9.86929∙10–4

0.75 1.0 0.20693218 2.14399∙10–1 2.10938∙10–1 7.4665∙10–3 4.00531∙10–3

1. 0.25 0.77880078 7.78813∙10–1 7.78809∙10–1 1.2426∙10–5 7.81068∙10–6

1. 0.5 0.60653065 6.06916∙10–1 6.06771∙10–1 3.8532∙10–4 2.40174∙10–4

1. 0.75 0.47236655 4.75204∙10–1 4.74121∙10–1 2.8376∙10–3 1.75454∙10–3

1. 1.0 0.36787944 3.79485∙10–1 3.75∙10–1 1.1606∙10–2 7.12056∙10–3

Now in order to approximate solutions ( , )nu x t  of FVIM get closer to exact solution 
we will apply residual method. According to section Improvement of solutions obtained by 
FVIM, error differential equation is:

	 [ ] 2 2
20 ( , ) D , D , D , D ,

2 2 2 2 2 2
D

2 2
mRL

t n x n x n x n x
x t x t x t x te x t e e e uα        − − −       

       
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	 2
2

1D , D , D ( , t) ( , t) ( , )
2 2 2 2 8x n x x n n n
x t x te u e x e x R x t   − + + = −   

   
	 (32)

subject to ( ,0) 0=ne x  where ( , )nR x t  is residue function and it is: 

	
( , ) 1D , D , D ( , ) ( , ) ( , )

2 2 2 2 8
n

xx n x n x n n n
u x t x t x tu u u x t u x t R x t

t

α

α

∂    − + + =   ∂    
	 (33)

With the same process in section Process of fractional VIM (FVIM) for fractional 
PDE, eq. (32) is solved functionally, then fig. 5 is plotted with some values of ( , )x t  and the 
obtained values are given as in tab. 7.

u1(0.25, t) + e4(0.25, t)

u2(0.25, t) + e4(0.25, t)

u3(0.25, t) + e4(0.25, t)

u4(0.25, t) + e4(0.25, t)

0.252e–t

t

e n +
 u

n 0.06

0.05

0.04

0.03

0.02

0.01

0
0                    0.2                  0.4                   0.6                  0.8                  1.0

Figure 5. First four corrected 
solution obtained by FVIM 
for α = 1, and exact solution  
of eq. (28)

Table 7. Comparison of 4( , )u x t  and 4 4( , ) ( , )u x t e x t+  improved approximate solutions for α = 1, and 
exact solution of eq. (28)

x t Exact solution u4(x, t) u4(x, t) + e4(x, t) Absolute  
error u4(x, t)

Absolute error  
u4(x, t) + e4(x, t)

0.25 0.25 0.0486750489 0.0486769732 0.0486750489 1.92427039∙10–6 9.56063336∙10–12

0.25 0.5 0.0379081662 0.0379685418 0.0379081711 6.03756173∙10–5 4.84764997∙10–9

0.25 0.75 0.0295229095 0.0299725366 0.0295230941 4.49627111∙10–4 1.84557960∙10–7

0.25 1.0 0.022992465 0.024850978 0.0229948993 1.85851297∙10–3 2.43426193∙10–6

0.5 0.25 0.194700195 0.194704644 0.194700195 4.44864729∙10–6 1.53773168∙10–11

0.5 0.5 0.151632665 0.151771333 0.151632672 1.38668698∙10–4 7.77544133∙10–9

0.5 0.75 0.118091638 0.119117951 0.118091933 1.02631322∙10–3 2.95237553∙10–7

0.5 1.0 0.0919698603 0.0961873186 0.0919737444 4.21745828∙10–3 3.88413411∙10–6

0.75 0.25 0.43807544 0.43808339 0.43807544 7.94935900∙10–6 2.24759161∙10–11

0.75 0.5 0.341173496 0.341420479 0.341173507 2.46983482∙10–4 1.13438472∙10–8

0.75 0.75 0.265706186 0.267528503 0.265706616 1.82231695∙10–3 4.29965939∙10–7

0.75 1.0 0.206932185 0.214398659 0.206937832 7.46647344∙10–3 5.64691542∙10–6

1.0 0.25 0.778800783 0.77881321 0.778800783 1.24264055∙10–5 3.08564312∙10–11

1.0 0.5 0.60653066 0.60691598 0.606530675 3.85319968∙10–4 1.55528676∙10–8

1.0 0.75 0.472366553 0.475204191 0.472367141 2.83763830∙10–3 5.88743118∙10–7

1.0 1.0 0.367879441 0.379484999 0.367887164 1.16055584∙10–2 7.72260585∙10–6

Conclusions

In this paper, time-fractional PDE with proportional delays are considered and their 
semi-analytical solutions are obtained by using FVIM composed of modified Riemann-Liou-
ville type derivative. For 0 1< <α , since the exact solutions of three test problems are not 
known, the residue error function is introduced additionally. With the aid of estimated error 
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function it is also showed by figures and tables that the FVIM method yields sensitive values to 
the exact solutions or estimated errors of problems. Considering FVIM, the series solutions are 
found by using the initial conditions only. So the consecutive terms is transferring the data to 
next term and this is a significant advantage of the FVIM. If an exact solution exists for the 
equation, it can also be seen that the series solution converges to the closed form solution. On 
the other hand, it is observed from tables that are indicated for each case, that FVIM provides 
nearly exact solutions to problems with the same approximation order and same initial data.
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