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Thermoeconomic analysis of spiral heat exchanger is conducted. Different geomet-
rical parameters, such as outer diameter, plate height, passage gap, etc. are used 
and varied in a wide range. Detailed thermal and total costs analyses were per-
formed for two spiral heat exchanger with different process fluids (water and ther-
mal oil) with temperature changes, while the wall temperature was kept constant 
(condensation). The results were shown graphically. It is determined that optimum 
values of number of entropy generation units correspond to minimum total annual 
cost. The optimal solution could be found in the recommended range of geometric 
sizes for defined inlet and outlet temperatures and process fluid-flow rate.
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Introduction

Thermoeconomists claim that human economic systems can be modeled on the basis 
of thermodynamic systems, i. e. on the basis of the First and Second law of thermodynamics, 
Burley et al. [1]. Valero and Torres [2] say that thermoeconomics is the science of natural 
resources saving that connects physics and economics by means of the Second Law of thermo-
dynamics.

Maheshwari and Patel [3] said that Prigogine’s minimum entropy generation princi-
ple is the most debated one. The entropy generation minimization approach, widely applied to 
modeling and optimization of thermal systems that owe their thermodynamic imperfection to 
heat transfer, mass transfer, and fluid-flow irreversibility’s, demonstrates some inconsistencies 
and paradoxes in application to heat exchanger design. Xu [4] stated that even McClintock 
[5] had found that it is not possible to neglect irreversibility in heat exchanger design. Bejan  
[6-9] in his studies and researches proposed the criterion of minimization of entropy generation 
and widely used it for optimization of thermal equipment. Hesselgreaves [10] and Bertola and 
Cafaro [11], found that entropy generation minimization approach led to some contradictions. 
Hesselgreaves [10] proposed non-dimensionalisation method for the entropy generation in heat 
exchanger in order to avoid the entropy generation paradoxes, but this method has induced 
some other contradictions.
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Ahmadi et al. [12] conducted analysis of the optimal design of the plate fin heat ex-
changer (PFHE) using the thermoeconimic approach where the number of entropy generation 
units and the total annual cost were objective functions and different design parameters were 
considered (such as fin pitch, fin height, fin offset length, cold stream length, etc.). It was shown 
that the results from exergy analysis revealed that the exergy efficiency of the heat exchanger 
increases, the total cost of the heat exchanger increases, respectively. They concluded that high-
er exergy efficiency leads to have efficient heat exchangers in both thermodynamic and thermo 
economic points of view.

Nag and Mukherjee [13] analyzed entropy generation rate due to fluid friction and heat 
transfer, considering the phase change of one side fluid-flow and a constant wall temperature in a 
duct. Entropy generation rate was optimized with non-dimensional temperature difference where 
non-dimensional duty and duct ratio (duct length over duct radius) were used as parameters and 
with ratio of heat transfer rate to pumping power (non-dimensional duty was used as parameter).

Bermejo et al. [14] conducted an optimization of the micro-channel evaporator design 
based on entropy generation number. Zhou et al. [15] optimized PFHE according to optimal 
allocation of total heat transfer area between fluid sides using entropy generation minimization 
method of PFHE. Specific entropy generation rate was an optimization objective while total 
PFHE area was constraint and the criterion was a ratio of hot-side heat transfer area to total heat 
area (allocation ratio) while fin height, fin spacing, etc., were used as geometrical parameters. 
Nguyen and San [16] showed the relation of heat transfer effectiveness of spiral heat exchanger 
(SHE) with number of transfer unit (NTU), ratio of flow capacity rates, number of spiral turns. 
They concluded that it is possible to find heat transfer maximum for optimal parameters previ-
ously mentioned.

Kaushik and Manjunath [17] conducted entropy generation analysis of air cooled 
wire-and-tube condenser to investigate influence of geometrical and operating parameters. The 
analysis also merges thermoeconomics. It is combining the Second law of thermodynamics 
with economics where geometrical parameters of the condenser like tube outer diameter, wire 
diameter, number of wire pairs, number of tube rows, tube pitch, wire pitch, and refrigerant 
properties like mass velocity, saturation temperature and dryness fraction were varied. 

Melhem et al. [18] studied the entropy generation due to the laminar flow and heat 
transfer with four different fluids, applied to circular cylinder confined between parallel planes. 
Pourmahmoud et al. [19] investigated the effects of non-dimensional rib height on the total 
entropy generation, so as entropy generation attributed to the friction, and the heat transfer. It is 
concluded that the optimum rib height with the minimum total entropy generation rate depend 
on Reynolds number and wall heat flux. 

The aim of this paper is to analyze both, thermal and economic aspects of SHE. The 
results of optimization according to minimum total annual cost achieved by varying plate 
height, effective plate height, passage gap, outer diameter of SHE, and the size of heat transfer 
area are given, and results are presented graphically. Using the applied methodology of ther-
moeconomics it is shown that it is possible to determine the optimum SHE size according to 
minimum entropy generation.

Modeling

Thermal analysis

In this study spiral plate heat exchanger with rectangular cross-section is modeled as a 
single stream heat exchanger. The steam, as a utility fluid, flows through one passage, achieving 
the condition of constant wall temperature. Through the second spiral passage a process flu-
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id-flows, and the variation of bulk fluid temperature along the 
spiral passage can be obtained from heat exchange analysis.

The rectangular cross-sectional area of the passages is 
used as a thermodynamic control volume, as shown in fig. 1. 
The wall temperature, Tw, of the passage is kept constant 
during the process (i. e. saturated or superheated water vapor 
is used). An incompressible fluid, with mass-flow rate, m , and 
inlet temperature, Tin, enters the passage. The energy balanc-
es of an incompressible steady fluid-flow within the control 
volume of the passage (length dx):

 ( )wd dp QQ m h mc dT P T T xδ α= = = −

   (1)

From eq. (1) we get fluid temperature on SHE surface, 
T(x) as:

 w w in( ) ( ) exp( )T x T T T Bx= − − ⋅ −  (2)

where parameter B is defined:

 2

eff

2St 4StQ

p c h

P NTUB
mc L b D
α

= = = =


 (3)

The hydraulic diameter, Dh, [m], of the spiral passage is defined:

 eff

eff

eff

4( ) 2 2
2( ) 1

c c
h c

cc

B b bD bbB b
B

= = ≈
+ +

 (4)

where Beff is effective plate height [m], and it is calculated:

 eff ph  0.02B B= −  (5)

and Bph is actual plate height [m].
The NTU for cold (process) fluid (NTU2) is defined [20]:

 w in
2

w out
lnHE

p

T TSNTU
mc T T
α −

= =
−

 (6)

Entropy generation

Entropy generation for thermodynamic control volume, for constant wall temperature, 
can be written:

 gen
w

d d QS m s
T
δ

= −




  (7)

If we consider well known thermodynamic relation:

 dd d ph T s
ρ

= +  (8)

Figure 1. Spiral heat exchanger
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from eqs. (7) and (8):

 gen
w

d d dd p
T T pS mc m

T T Tρ
 

= − − 
 



   (9)

Heat transfer coefficient, for radial fluid-flow without phase change in SHE, is usually 
obtained according to Holger [21] and Minton [22]. According to Saravanan and Rajavael [23] 
Holger’s correlation:

 0.74 0.4Nu St RePr 0.04Re PrhDα
λ

= = =  (10)

gives results that have a good matching with experimental data in range of Reynolds number 
between 400 and 30000. In eq. (10), λ is thermal conductivity [Wm–1K–1] and dimensionless 
numbers are:
 – Nusselt number

 Nu St RePr hDα
λ

= =  (11)

 – Reynolds number

 Re hwD ρ
µ

=  (12)

 – Prandtl number

 Pr pc µ
λ

=  (13)

The fluid velocity for radial flow:

 
c

mw
Aρ

=


 (14)

and the cross-section of the rectangular passage is given:

 effc cA B b=  (15)

For radial fluid stream without phase change, Holger [21] recommends the following 
equation for pressure drop:

 
2

eff

2D
c

L wp f
b

ρ
∆ =  (16)

where ρ [kgm–3] is density, w [ms–1] – the average velocity, and fD [–] – the Darcy friction factor.

 0.1641.5 0.2Re
ReDf

−= +  (17)

Entropy generation number for process stream is defined as non-dimensional number 
composed of heat transfer and viscous friction contributions, Garcia and Moreles [24]:

 ( ) ( )s s sN N T N p= ∆ + ∆  (18)

Entropy generation number of stream contributed by heat transfer:
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 (19)

and the entropy generation number of stream contributed by fluid friction:
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The non-dimensional temperature difference:

 w in

w

T T
T

τ
−

=  (21)

and characteristic temperature, Ts, is defined:
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It can be shown that the characteristic temperature, Ts, depends on flow pattern trough 
SHE (cocurrent flow, counter-current flow, plug flow with constant wall temperature, etc.). It 
has to be noted that Guo et al. [25] Ts defined:

 out in

out

in
ln

s
T TT

T
T

−
=

 
 
 

 (23)

which is not correct because eq. (23) can be used as an approximation of eq. (22) only in case 
when Tout is very close to Tin and Tw. In that specific case it is equally good to use expression:

 in out

2s
T TT +

=  (24)

There are two criteria for describing the entropy generation. The first one is Bejan 
number which shows the rate of entropy generation contributed by heat transfer on the overall 
generation of entropy taken from Yilmaz et al. [26]:

 ( )Be
( ) ( )

s

s s

N T
N T N p

∆
=

∆ + ∆
 (25)

Apparently, the Bejan number values are in range from 0 to 1; limiting cases Be = 1 and  
Be = 0 represent the irreversibility occurred only by heat transfer and only by fluid friction, re-
spectively. Other criterion is the relative importance of the two irreversibility mechanisms, and 
it is described by the irreversibility distribution ratio, Φ, which is defined in [7]:

 ( )
( )

s

s

N p
N T

Φ
∆

=
∆

 (26)
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It is obvious that entropy generation number can be expressed:

 (1 ) ( )s sN N TΦ= + ∆  (27)

Economic optimization

Economic optimization is conducted according to criterion of minimum annual costs:

 tot inv operC a C C= ⋅ +  (28)

where a = 0.1 1/year is the amortization rate, Cinv [€] are the overall investment costs, and  
Coper [€year–1] presents the operating costs. The investment costs are calculated with the as-
sumption that pump/blower is already installed on SHE pipeline, so:

 inv HEC C=  (29)

Installed cost of spiral heat exchanger made of SS304, according to [27], can be ex-
pressed:

 0.573720 8720HE HEC S= +  (30)

where SHE [m2] is heat exchanger surface calculated:

 eff eff2HES B L=  (31)

The operating costs mainly consist of annual cost for electric power consumption  
PW [W] is pump power consumption:

 oper year kWhWC P cτ=  (32)

where the number of annual working hours is yearτ  = 8000 h/year, and the average price of elec-
tricity in Europe is given as kWhc  = 0.15 €/kWh.

Pump power consumption

Power of pump is calculated:

 1
W

mP p
E ρ
 

= ∆ 
 



 (33)

where ∆p [Pa] is pressure drop.
Overall efficiency E consist of pump, EP, and motor, EM, efficiencies:

 P ME E E=  (34)

and they can be calculated using the following equations.
Estimation of the motor in eq. (35) and pump in eq. (36) efficiencies according to [28] 

defined for m /ρ = 11-1100 m3/h and PW = 0.75-1100 kW are:
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1.06 0.145P
mE
ρ

−
 

= −  
 



 (36)

Analysis and discussion

Thermodynamic properties of fluids were calculated according to [29]. The present-
ed numerical model is programmed and resolved with Visual Basic language. Optimal design 
of SHE should be calculated on the basis of 
inlet and outlet temperatures and process 
fluid-flow rate. Optimum values of number 
of entropy generation units correspond to 
minimum total annual cost. The solutions 
have to be found in the recommended range 
of geometric sizes for this type of heat ex-
changers.

In the first example is determined the 
size for SHE working with SAE15W40 as 
process fluid. Results are shown on fig. 2. 
Ranges for geometrical parameters and 
Reynolds number used are Beff = 1000- 
-2500 mm, bc = 3-69 mm, Dout = 323-5107 
mm, SHE = 11.8-453 m2, and Re = 387-989. 
Working conditions used for this SHE are 
Q = 1000 kW, tw = 150 °C, t2p = 60 °C, and 
t2k = 110 °C, where Q is SHE heat duty, tw 
is constant wall temperature and t2p, t2k are, 
respectively, inlet and outlet temperatures of 
SAE15W40.

The second example is performed in 
case when water is used as process fluid. 
Results are shown on fig. 3. Ranges for geo-
metrical parameters and Reynolds number 
used in this case are Beff = 1000-2500 mm, 
bc = 5-61 mm, Dout = 284-2082 mm, SHE = 
= 4.9-117 m2, and Reynolds number in 
range 25283-65222. In this case, Q = 4000 
kW, tw = 100 °C, t2p = 20 °C, and t2k = 70 °C.
 – For defined heat duty and temperature-operating mode, there is an optimal entropy gener-

ation number Ns, opt that determines the minimal total annual costs for adopted plate height 
and the corresponding passage gap (the spacing between consecutive rounds of the spiral 
plate). The entropy generation of stream contributed by heat transfer is constant value and 
it depends on the inlet and outlet temperatures. The entropy generation of stream contrib-
uted by fluid friction depends on the pressure drop and the characteristic temperature, Ts, 
(eq. (22), characteristic temperature, Ts, depends on the pattern of fluid-flow in a heat ex-
changer). According to the criterion of the technoeconomic optimization that gives about a 
constant pressure drop regarding the size of SHE, it follows that Ns, opt is the same for all the 
SHE of this class (irreversibility being totally dominated by heat transfer).

Bph, [mm]

c to
t [

€y
–1

]

Figure 2. The SHE with SAE15W40 as process fluid

Figure 3. The SHE with water as process fluid

Bph, [mm]

c to
t [

€y
–1

]
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 – The increase in Ns is followed by the increase of the total annual costs, primarily due to the 
increase in operating costs (increased pressure drops of fluid streaming through SHE).

 – With decrease of Ns (due to reduced pressure drop) total annual costs increase primarily due 
to the increase in investment costs (increased surface area for heat exchange). This means 
that the heat exchanger with a zero pressure drop, when Ns = Ns, min = Ns(Δt), is not an op-
timal solution according to the criteria defined in this article. The adopted model of heat 
exchange gives Ns(Δt) → 0 when NTU2 → ∞, and it is so-called vanishing heat exchanger 
limit, Hesselgreaves [10].

 – The Ns, min is value for zero pressure drop entropy generation. It is found from the examples 
that for the oil is Ns, opt = 1.0073 Ns, min, and for water is Ns, opt = 1.001 Ns, min.

Conclusion

In this paper it is analyzed spiral heat exchangers using thermoeconomic aspects. 
Entropy generation number was determined for various working conditions of incompressible 
fluid-flow through a spiral passage subjected to isothermal boundary condition, and it has been 
correlated to the total annual costs. Through two examples it was shown that the optimal value 
of entropy generation number Ns, opt, defined for minimum annual cost, is very close (just slight-
ly greater) to minimum of entropy generation Ns, min.

Presented model can be used for design of an optimal SHE (for defined flow rates and 
inlet and outlet temperatures), without performing economic analysis and calculation of the 
minimal annual costs.

Nomenclature
Ac – cross-section area, [m2]
a – amortization rate, [year–1]
Bph – plate height, [m]
Beff – effective plate height, [m]
bc – passage gap (i. e. the spacing between 

consecutive rounds of the spiral plate,  
b – δ), [m]

Be – Bejan number, [–]
CHE – heat exchanger cost, [€]
Ctot – total costs, [€year–1]
ckWh – unity power price, [€kWh–1]
Cinv – overall investment costs, [€]
Coper – operating costs, [€]
cp – specific heat at constant  

pressure, [Jkg–1K–1]
Dh – hydraulic diameter, [m]
Dout – outer diameter of SHE, [m]
E – overall efficiency, [–]
EM – motor efficiency, [–]
EP – pump efficiency, [–]
fD – Darcy friction factor, [–]
h – specific enthalpy, [Jkg–1]
m  – mass-flow rate, [kgs–1]
NTU – number of transfer unit, [–]
Nu – Nusselt number, [–]
Ns – entropy generation number, [–]
Ns, opt – optimal entropy generation number, [–]
Ns(Δp) – entropy generation number contributed by 

fluid friction, [–]

Ns(ΔT) – entropy generation number contributed by 
heat transfer, [–]

Leff – effective spiral length (fig. 1. m to M, so 
as n to N), [m]

PQ – heat transfer perimeter, [m]
PW – pump power, [W]
p – pressure, [Pa]
Δp – pressure drop, [Pa]
Pr – Prandtl number, [–]
Q  – heat transfer rate, [W]
r1, r2 – radius of consecutive spirals, [m]
Re – Reynolds number, [–]
s – specific entropy, [Jkg-1K-1]

genS  – entropy generation rate, [WK-1]
SHE – heat exchanger surface area, [m2]
St – Stanton number, [–]
T – temperature, [K]
w – average velocity, [ms-1]
x – length, [m]

Greek symbols

α – convective heat transfer  
coefficient, [Wm–2K–1]

δ – thickness of wall, [m]
Φ – irreversibility distribution ratio, [–]
λ – thermal conductivity, [Wm–1K–1]
µ – dynamic viscosity, [Pa∙s]
ρ – density, [kgm–3]
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τyear – number of annual working  
hours, [hyear–1]

τ – non-dimensional temperature  
difference, [–]

Subscripts

in – inlet
min – minimum

out – outlet
opt – optimum
oper – operating
w – wall
2 – cold fluid stream
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