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Thermal elastic-plastic stresses and strains have been obtained for rotating an-
nular disk by using finite difference method with Von-Mises’ yield criterion and 
non-linear strain hardening measure. The compressibility of the disk is assumed 
to be varying in the radial direction. From the numerical results, we can conclude 
that thermal rotating disk made of functionally graded material whose thickness 
decreases exponentially and density increases exponentially with non-linear strain 
hardening measure (m = 0.2) is on the safe side of the design as compared to disk 
made of homogenous material. This is because of the reason that circumferential 
stress is less for functionally graded disk as compared to homogenous disk. Also, 
plastic strains are high for functionally graded disk as compared to homogenous 
disk. It means that disk made of functionally graded material reduces the possibil-
ity of fracture at the bore as compared to the disk made of homogeneous material 
which leads to the idea of stress saving.
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Introduction

The study of stress distribution at high angular velocity and temperature in rotating 
disk made of non-homogenous material is an active topic due to large number of industrial and 
mechanical applications. Some analytical solutions to rotating disk in elastic state and plastic state 
are available in [1, 2] and research on them is always an important topic. Eraslan [3] investigated 
inelastic stresses and displacements in rotating solid disks of exponentially varying thickness 
using Tresca’s and Von-Mises’ yield criterion with linear strain hardening. Plastic limit angular 
velocities have been calculated for different disk profiles. Further, Eraslan and Akgul [4] extended 
his work to find the numerical solution for elastic-plastic stresses in a rotating disk with Von-Mis-
es’ yield criterion using general non-linear strain hardening rule. The previous work mainly con-
centrates on the material whose mechanical and physical properties are constant. In contrast, 
non-homogenous materials have different spatial distribution of material properties which can be 
designed according to different engineering applications. Gupta and Shukla [5] studied the effect 
of non-homogeneity on elastic-plastic stresses in a rotating disk using transition theory and con-
cluded that non-homogeneous thin rotating disk require high angular speed for initial yielding as 
compared to homogenous disk. Further, Gupta et al. [6] studied rotating disk with variable thick-
ness and variable density to analyze creep stresses and concluded that a rotating disk with variable 
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thickness and density is on the safer side of design in comparison to flat disk with variable density. 
Yuriy et al. [7] discussed the control problem of thermal stresses in axissymmetrical infinite cylin-
der using technique of integral transform. Sharma and Sahni [8] investigated elastic-plastic stress-
es for rotating disk made of transversely isotropic material and concluded that rotating disk made 
of transversely isotropic material is on the safer side of design as compared to rotating disc made 
of isotropic material. Reza et al. [9] discussed finite element simulation of residual stresses during 
the quenching process. A 3-D non-linear stress analysis model is used to estimate stress fields of 
UIC60. You et al. [10] calculated the elastic-plastic stresses with polynomial non-linear strain 
hardening model for rotating solid disk using perturbation technique. Further, with this polynomi-
al non-linear strain hardening model You et al. [11] investigated elastic-plastic stresses for rotating 
disk having arbitrary variable thickness and density using Runge-Kutta method. Zhanling et al. 
[12] used finite element analysis of thermal-structure coupling to investigate stress and tempera-
ture when material properties are temperature dependent in a drag disk break application. Sharma 
and Yadav [13] investigated elastic-plastic stresses for rotating disk made up of isotropic material 
having exponentially variable thickness and exponentially variable density with non-linear strain 
hardening using finite difference method. They observed that disk whose thickness decreases ra-
dially and density increases radially is on the safer side of the design as compared to disk whose 
thickness and density varying exponentially as well as flat disk. Deepak et al. [14] studied creep 
stresses in a rotating disk made up of composite of silicon carbide particles in a matrix of pure alu-
minums and their study indicates that with the increase in particle gradient in the disk, the radial 
stress increases throughout the disk, whereas the tangential and effective stresses increase near the 
inner radius but decrease near the outer radius. 

In this paper, we investigated thermal elastic-plastic stresses and strains for rotating 
disk made up of functionally graded material using finite difference method. The thickness and 
density are assumed to vary exponentially along the radius. Results have been discussed numer-
ically and propounded graphically. 

Mathematical formulation

Distribution of material properties and  
thickness profile with basic equations

A thermal annular axi-symmetrical disk has been considered with inner radius, a , and 
external radius, b , rotating with angular velocity, ω . The disk is made up of functionally grad-
ed material having exponentially varying thickness and density with plane stress condition i. e. 

0zzT = . 
The coefficient of thermal expansion, compressibility, density, temperature distribution 

of the material and thickness profile of the rotating annular disks with radius, r , are expressed:
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where 0α , 0C , 0ρ , 0θ , and 0h  are material constants and k , d , 1α , and n are the geometric pa-
rameters.

The equation of equilibrium for the rotating disk is:
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	 2 2d ( ) –  0
d rrhrT hT h r

r θθ ρω+ = 	 (2)

The relation between strains and radial displacements are:

	 d , ,
dr z
u ue e e t
r rθ= = = 	 (3)

where u  is the radial displacement and t  is a constant.
The equation of compatibility can be derived from eq. (3):

	 d  0 
d  r
er e e
r
θ

θ+ − = 	 (4)

The total radial and circumferential strains in rotating annular disks are:

	 e p
r r re e e αθ= + + ,     e pe e eθ θ θ αθ= + + 	 (5)

The relationship between stresses and strains can be represented by Hooke’s Law in 
elasticity:
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3 3
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where C is the compressibility, rrT and Tθθ are radial and circumferential stresses, respectively.
The temperature field satisfying Laplace heat equation is with: 

	 2 0θ∇ =   with  0θ θ=   at  r a= ,  0θ =   at  r b= ,  ( ) 0 log
log

rr a b
b

θ
θ = ,  0θ   is a constant	 (7)

Let us define radial and circumferential stress in terms of stress function:

	 2 21 d,
 drrT T r

hr h rθθ
φ φ ρω= = + 	 (8)

Substituting eq. (8) into eq. (6) and expressing strain components of eq. (5) in terms 
of stress function:
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Substituting eq. (9) into eq. (4), we have a governing differential equation for thermal 
elastic-plastic strain hardening rotating disks:
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where
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In the elastic region ( 0)p p
re eθ= = , eq. (10) reduces to:
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For the plastic deformation, the relations between stresses and plastic strains can be 
determined according to the deformation theory in plasticity [2]:
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where p
re  and peθ  are the plastic radial and circumferential strains, p

ee  is the equivalent plastic 
strain which depends on the material model used and eeT  is the equivalent stress.

The von Mises’ equivalent stress is given by the expression:

	 ( ) ( ) ( )2 2 21
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The stress-strain relationship for Swift’s hardening law can be written:
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where 0T  is the yield limit, ee  – the equivalent total strain, 0e  – the yield strain and eeT  – the 
equivalent stress. 

Substituting p
ee  from eq. (14) into eq. (12) results in:
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The boundary conditions for the rotating annular disks are:

	 0rrT =    at    r a= ,   0rrT =    at   r b= 	 (16)

Substituting eq. (15) into eq. (10), we have a non-linear differential equation in terms 
of φ  as:
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Equation (17) is a non-linear differential equation in the plastic region for rotating 
disk made up of functionally graded material with Swift’s non-linear strain hardening mea-
sure having non-uniform thickness and whose material properties subjected to thermal loading. 
When compressibility is assumed to be constants without thermal effects, eq. (17) becomes 
same as that obtained by Sharma and Yadav [13]. 

Finite difference algorithm

To determine thermal elastic-plastic non-homogeneous stresses and strains in thin 
rotating disks with non-linear strain hardening material, we have to solve the second order 
non-linear differential eq. (17) under the boundary conditions (16). The general form of eq. (17) 
can be written:

	 ( )   ,  ,f rφ φ φ′′ ′= 	 (18)

–– First partitioned the disk domain [ ]r a b=  into p  subintervals of length r∆  and express 
the differential operator φ′ and φ′′ in finite difference form:
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–– With h = 1/p, we have p + 1 nodal points 11 2 , , pφφ φ +… . The values at the end points are 
given by eq. (16), i. e. 1 10,  0 pφ φ += = . Using the finite difference approximation, we get the 
following system of equations:
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Stress function, stresses and strains can be obtained from the aforementioned system 
of ( )1p −  non-linear equations using Newton-Raphson method. 

(17)
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Numerical discussion

The material properties of the annular disks made of functionally graded material with 
angular velocity ( 300,700 rad/s)ω =  and thermal effects 0( 0,400,700 C)θ = °  are defined as: 
material density 0 7850ρ =  kg/m3, compressibility coefficient 0 0.5C = , thermal expansion co-
efficient 6

0 17.8 10α −= ⋅  oC–1, Poisson’s ratio 0.3ν = . The inner and outer radii of the disk are 
taken as  0.1a =  m and  0.5b =  m, respectively. The geometric parameters of the disk are taken 
as 0.5, 1n =  in thickness function, 0.7, 1d =  in density function, 1 0α =  in coefficient of thermal 
expansion and 0, 0.5, 1, 1.5k = − − −  in compressibility function. 

In order to explain the effect of rotation and compressibility on stresses in a disk made 
up of homogenous and functionally graded materials, tab. 1 and curve have been drawn in figs*. 
1-3 between stresses and radii r  = 0.1:0.1:0.5.

Table 1 has made for circumferential (hoop) stresses with different parameters of com-
pressibility and angular speed for non-linear strain hardening measure 0.2m = . From tab. 1, it is 
observed that without thermal effects circumferential stresses are maximum at the internal sur-
face and increases significantly with the increase in angular speed. For functionally graded disk, 
circumferential stresses increases with the increase in compressibility radially. It is also noticed 
that circumferential stress is high for homogenous disk (k = 0) as compared to functionally grad-
ed disk ( 0.5, 1, 1.5)k = − − − . Also, circumferential stresses are high for highly functionally grad-
ed disk (k = –5) as compared to homogenous disk and these stresses increases with the increase 
in compressibility ( 5, 6, 7, .)k etc= − − − . With the introduction of thermal effects, circumferen-
tial stresses decrease and these stresses further decrease with the increase in temperature. With 
the increase in Swift’s strain hardening measure, circumferential stress increases whereas these 
stresses decrease with the exponential decrease in thickness and increase in density.

Radial stress and strain (ω = 300 rad/s, d = 0.7, n = 0.5)
Hoop stress and strain (ω = 300 rad/s, d = 0.7, n = 0.5)
Radial stress and strain (ω = 300 rad/s, d = 0.7, n = 1)
Hoop stress and strain (ω = 300 rad/s, d = 0.7, n = 1)

Radial stress and strain (ω = 700 rad/s, d = 0.7, n = 0.5)
Hoop stress and strain (ω = 700 rad/s, d = 0.7, n = 0.5)
Radial stress and strain (ω = 700 rad/s, d = 0.7, n = 1)
Hoop stress and strain (ω = 700 rad/s, d = 0.7, n = 1)
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Figure 1. Elastic-plastic stresses in a rotating disk with parameters = − − −( 0, 0.5, 1, 1.5)k
* Legend is valid for all figures (figs. 1-6)
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Plot of stresses (k = 0, θ0 = 400 °C) Plot of stresses (k = –0.5, θ0 = 400 °C)

Plot of stresses (k = –1, θ0 = 400 °C) Plot of stresses (k = –1.5, θ0 = 400 °C)
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Figure 2. Thermal elastic-plastic stresses in a rotating disk with thermal effects  
( = °0 400 Cθ ) with parameters = − − −( 0, 0.5, 1, 1.5)k

From fig. 1, it is observed that circumferential stresses are maximum at internal sur-
face for the disks made up of both homogenous and functionally graded material. Also, circum-
ferential stresses are maximum for homogenous disk as compared to functionally graded disk. 
As compressibility measure changes from linear to non-linear, circumferential stresses decreas-
es. With the increase in non-linearity, stresses are again increases i. e. 257.843MPaθσ =  at 

0.5k = − , 258.195MPaθσ =  at 1k = − , and 260.190MPaθσ =  at 1.5k = − . From fig. 2, it 
has also been observed that with the increase in angular velocity from 300 rad/sω =  to 

700 rad/sω = , circumferential stresses increase significantly and maximum at internal surface 
of the disk. With the increase in thickness measure from 0.5n =  to 1n =  and density measure 
from 0.7d =  to 1d = , circumferential stress decreases. It can be observed from fig. 2 that 
circumferential stresses with thermal effects are maximum at internal surface for disk made of 
homogenous and functionally graded material. These circumferential stresses are maximum for 
homogenous disk as compared to functionally graded disk. With the increase in angular veloc-
ity circumferential stress increases significantly while with the increase in temperature, thick-
ness and density, circumferential stress decreases as can be seen from fig. 3.

In order to explain the effect of rotation and compressibility on strains in a disk made 
up of homogenous and functionally graded materials, tab. 2 and graphs have been drawn in figs. 
4-6 between strains and radii r  = 0.1:0.1:0.5.

It has been noticed from tab. 2 that without thermal effects, circumferential strains 
are maximum at external surface of the disk. Also, these circumferential strains are compres-
sive in nature. With the increase in angular speed, circumferential strains decrease signifi-
cantly. Also, these circumferential strains increase when the thickness of disk decreases while 
density of the disk increases exponentially. These strains decreases with the increase in tem-
perature while increases with the increase in angular speed. It has also been noted that cir-
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cumferential strains are less for homogenous disk (k = 0) as compared to disk made of func-
tionally graded material and these strains decreases with the increase in compressibility 
measure ( 0.5, 1, 1.5, 2)k = − − − − , etc.

From fig. 4, it is observed that plastic strains are maximum at external surface for 
homogenous as well as functionally graded disk. Plastic strains decreases significantly for 
functionally graded disk when compressibility measure changes from 1k = −  to 1.5k = −  as 
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Figure 3. Thermal elastic-plastic stresses in a rotating disk with thermal effects  
( = °0 700 Cθ ) with parameters = − − −( 0, 0.5, 1, 1.5)k
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Figure 4. Plastic strains in a rotating disk with parameters = − − −( 0, 0.5, 1, 1.5)k
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can be seen from fig. 4. Plastic strains decreases significantly when angular velocity chang-
es from ω = 300 rad/s to ω = 700 rad/s, but as thickness measure changes from 0.5h =  to 

1h =  and density measure from 0.7d =  to 1d = , these strains increases significantly. With 
the increase in temperature, plastic strains increases remarkably. From fig. 5, it has been 
observed that circumferential strains increases with the introduction of temperature. These 
strains further increases with the increase in temperature as can be seen from fig. 6. Also 
circumferential strains decrease significantly with the increase in angular velocity while 
increases with the increase in thickness and density. 
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Figure 5. Thermal plastic strains in a rotating disk with thermal effects  
( = °0 400 Cθ ) with parameters ( = − − −0, 0.5, 1, 1.5k )

Conclusion

From the previous analysis, it can be conclude that disk made of functionally grad-
ed material having non-linear strain hardening m = 0.2 with thermal effects whose thickness 
decreases exponentially and density increases exponentially is on the safer side of the de-
sign as compared to disk made of homogenous material. This is because of the reason that 
circumferential stress is less for functionally graded disk as compared to homogenous disk. 
Also, plastic strains are high for functionally graded disk as compared to homogenous disk. 
It means that disk made of functionally graded material reduces the possibility of fracture at 
the bore as compared to the disk made of homogeneous material which leads to the idea of 
stress saving.

Nomenclature
a	 –	 inner radii of the disk
b	 –	 outer radii of the disk
C	 –	 compressibility of the disk

C0, h0	 –	 material constants
d, k, n	 –	 geometric parameters
E	 –	 Young’s modulus
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Figure 6. Thermo plastic strains in a rotating disk with thermal effects  
( = °0 700 Cθ ) with parameters = − − −( 0, 0.5, 1, 1.5)k
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e0	 –	 yield strain
ee	 –	 equivalent strain

e
re 	 –	 radial elastic
p
re 	 –	 plastic strains

er	 –	 total radial strains
ez	 –	 circumferential strains

eeθ 	 –	 circumferential elastic
peθ 	 –	 plastic strains

eθ	 –	 axial strains
h	 –	 thickness of the disk
r	 –	 radius of the disk
Tee	 –	 equivalent stress

Trr, Tθθ, Tzz	–	radial, circumferential, and  
		  axial  stresses

u	 –	 radial displacement

Greek symbols

α	 –	 thermal expansion
α0,  θ0,  ρ0	–	 material constants
α1	 –	 geometric parameter
θ	 –	 temperature
ρ	 –	 density of the disk
ϕ	 –	 stress function
ω	 –	 angular velocity of the disk
ν	 –	 Possion’s ratio
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