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In this paper, we extend the novel integral transform of some functions by the dual-
ity relationship between it and Laplace transform. Additionally, applying the nov-
el integral transform, we solve a 1-D convection-dispersion equation describing 
the dispersion process of chemical additives in porous rocks during the hydraulic 
fracturing. The results indicate that the novel integral transform can provide a new 
idea to obtain more exact solutions of different convection-dispersion problems.
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Introduction

The convection-dispersion equations (CDE) are widely applied to describe the trans-
port of suspended particles in nature porous media, which is touched upon many engineering 
branches of the environment, the architecture, as well as the energy [1-3]. In particular, for 
energy exploitation (such as shale gas exploitation), with the massive application of hydraulic 
fracturing in recent years [4-6], the problem of the groundwater pollution has brought about the 
widespread attentions due to the fact that the hydraulic fracturing fluid containing numerous 
chemical additives is dispersed into the aquifer. Therefore, it is of a critical importance for 
understanding the dispersion process of the chemicals in aquifer [7, 8]. Usually, the analytic 
solutions of the CDE can be intuitively used to provide quantitative analysis of the dispersion 
of particles.

Presently, many researchers have solved the CDE with special initial and boundary 
conditions by the integral transforms (IT), such as Laplace transform (LT), and Fourier trans-
form (FT) [9]. However, with the development of the IT, some novel IT can be applied to 
provide new ideas for obtaining the analytic solutions of the CDE. Recently, some novel IT 
were proposed as the extensions of classical FT and LT to solve the heat transfer equations 
and diffusion equations [10-15]. Particularly, in [12], the duality relationship between a novel 
integral transform (NIT) and LT was studied in detail and the NIT was proved to be effective to 
solve some PDE like LT. This indicates that the NIT can be applied to obtain the exact solutions 
of the CDE.
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In view of the analysis, we plan to extend the NIT of some functions by the duality 
characteristic between the NIT and LT. Meanwhile, the 1-D CDE is analyzed by the NIT and 
the corresponding solution is discussed graphically.

The NIT of some basic functions

According to the idea [10], the definition of the NIT is described:
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where ( ), 0>x xφ , is a real function, e /− xζ ζ  is the kernel function, and IN  is the operator of NIT.
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where ( ), 0>x xφ , is a real function, e− xζ  is the kernel function, 
and L is the operator of the LT.

Obviously, from previous definitions, the NIT is similar to 
the LT in form. The main difference between them is reflected 
in the selection of the kernel function [16]. It is indicated that 
the NIT and LT are correlated, as well as mutually different. In 
order to verify the applicability of duality relationship as shown 
in fig. 1, we derive the NIT of five basic functions.

In detail, the NIT of five functions are proved as follows.
–– For ( ) 1=xφ  and 0>x , we have [17]:

	 ( ) [ ] 11= =F Lζ
ζ

	 (3)

According to the duality relationship in fig. 1, we have the following equation:
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–– For ( ) =x xφ  and 0>x , we have [18]:
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The NIT of ( )xφ  can be written:
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–– For ( ) e= axxφ  and 0>x , we have [17]:
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axF L
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The NIT of ( )xφ  is derived by the duality relationship:
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Figure 1. The duality of  
the NIT and LT



Liang, X., et al.: Applications of a Novel Integral Transform to the Convection- ... 
THERMAL SCIENCE: Year 2017, Vol. 21, Suppl. 1, pp. S233-S240	 S235

	 ( ) ( ) ( )
1 1 1e Ω = = =  −

axF L
a

ζ ζ
ζ ζ ζ ζ

	 (8)

–– For ( ) sin( )=x axφ  and 0>x , we have [17]:
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aF L ax

a
ζ

ζ
	 (9)

The NIT of ( )xφ  becomes:
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–– For ( ) cos( )=x axφ  and 0>x , we have [17]:
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The NIT of ( )xφ  is:
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The results of eqs. (4), (6), (8), (10), and (12) are same as those given in [10]. It is 
illustrated that the duality relationship between the NIT and LT is applicable to obtain the NIT 
of more functions. Thus, we extend the NIT of more functions in the appendix and adopt them 
to solve the CDE in next section.

Solving the CDE by the NIT

As displayed in fig. 2, the aquifer 
is assumed to be a semi-infinite po-
rous medium and contains no chem-
ical additives existing in fracturing 
fluid in initial state. During hydraulic 
fracturing, the fracturing fluid flows 
into the aquifer with the constant ve-
locity, u. Meanwhile, the concentra-
tion of chemical additives in aquifer 
boundary is treated as a constant, 
C0. Thus, the dispersion process of 
chemical additives in the aquifer can 
be described:

	
2

2

( , ) ( , ) ( , )∂ ∂ ∂
− =

∂ ∂ ∂
c x t c x t c x tk u

x x t
	 (13)

where ( , )c x t  is the concentration of the chemical additives in the aquifer, k – the dispersion 
coefficient, and u – the average travel velocity of the fracturing fluid.

The initial-value condition (IVC) and the boundary-value conditions (BVC) are:

Overburden
rock

Shale gas
reservoirs

Aquifer

Shale gas
well

Fracturing fluid

Figure 2. The schematic diagram of hydraulic fracturing
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respectively, where 0C  is a real constant.
According to the properties of the NIT in [10], the NIT of eq. (13) with respect to t is 

obtained as:
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Correspondingly, the NIT of BVC becomes:
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Substitution of the IVC into eq. (14) results in:
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From the eq. (16), we can obtain its eigenvalue equation [18]:

	 2 0− − =k uλ λ ζ 	 (17)
Then, the eigenvalues of eq. (17) are given:
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Thus, the solution of eq. (16) is presented:
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Substituting the BVC eq. (15) into eq. (19), we have:

	 0
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Taking eq. (20) into the eq. (19), we obtain:
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According to the result in tab. 1 (Appendix), we have the NIT of a special function:
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where a, b are the constants, and 1/2 1/2erfc[1/2( / ) ( ) ]a t bt−  is the error function [17].
Finally, we solve the inverse NIT of eq. (21) with respect to t and have:

	 0 e erfc erfc
2 2 2

ux
kC x ut x utC

kt kt

 + −   = +    
    

	 (23)



Liang, X., et al.: Applications of a Novel Integral Transform to the Convection- ... 
THERMAL SCIENCE: Year 2017, Vol. 21, Suppl. 1, pp. S233-S240	 S237

The convection-dispersion solutions of eq. (23) for varied parameters are illustrated 
in figs. 3(a) and 3(b). The results show that the dispersion ranges of chemical additives will be 
wider and wider as the time increases and the concentrations of chemical additives in aquifer 
also will increase. For example, fig. 3(a) demonstrates that the dispersion ranges reach ap-
proximately 25 meters in 60 seconds. In addition, 70% chemical additives are discovered at 
30 meters in 60 minutes [red curve (1) in fig. 3(b)], while approximately 0 in 60 seconds [red 
curve (1) in fig. 3(a)].
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Figure 3. The convection-dispersion curves with different parameters:  
(a) 2 seconds time interval for each curve, (b) 2 minutes time interval  
for each curve; red curve (1) 
(for color image see journal web site)

Conclusion

In this study, the NIT was applied to obtain the exact solution of a 1-D CDE for an 
efficient description of the dispersion process of chemical additives in porous rocks during 
the hydraulic fracturing. With the help of the duality relationship between the NIT and LT, the 
extended NIT table presented in the Appendix was convenient to obtain the solutions of some 
PDE. The results were given to show that the dispersion range of chemical additives in the 
aquifer is wide (25 meters in 60 seconds) and that the dispersion scale is large (70% within 60 
minutes). It is demonstrated that the chemical additives affect the groundwater quality with the 
time increases due to the strong dispersion process.
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Nomenclature

c	 –	 concentration of the chemical  
	 additives, [gL–1]

k	 –	 dispersion coefficient, [cm2s–1]

t	 –	 time, [s]
u	 –	 flow velocity, [cms–1]
x	 –	 diffusion distances, [m]
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Appendix

Table 1. The NIT of some functions
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( )xφ ( ) ( )=   F L xζ φ
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Table 1. (continuation)
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