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In this paper, we consider the linear telegraph equations with local fractional de-
rivative. The local fractional Laplace series expansion method is used to handle the 
local fractional telegraph equation. The analytical solution with the non-differen-
tiable graphs is discussed in detail. The proposed method is efficient and accurate.
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Introduction

Local fractional calculus [1] has played an important role in the field of mathemati-
cal science and mathematical physics, such as the generalized convex [2] and s-convex [3, 4] 
functions on fractal sets, and Pompeiu-type [5], Steffensen [6], Hermite-Hadamard [7], Holder 
[8], Hilbert [9], Korteweg-de Vries [10], Burgers [11], Boussinesq [12], heat conduction [13], 
diffusion [14, 15], tricomi [16], Goursat [17], and others [18-21]. 

The many non-differentiable problems were described by the local fractional ODE 
and PDE. Many computational techniques, such as the non-differentiable travelling-wave trans-
formation technology [10-12], local fractional variational iteration Laplace transform meth-
od [13], decomposition method [14], series expansion sumudu transform method [15], local 
fractional integral transform method [19], and Laplace series expansion method [22-25], were 
developed to find the solutions for the local fractional ODE and PDE.

The local fractional linear telegraph equations were solved by the Laplace decomposi-
tion method [26] and Laplace variational iteration method [27]. The local fractional Laplace se-
ries expansion method has not yet been considered to handle the local fractional linear telegraph 
equation. In the sprint of the idea, the main target of the paper is to present a new application 
of the local fractional Laplace series expansion method to find the analytic solution of the local 
fractional linear telegraph equation.
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Mathematical fundamentals

In this section, we introduce the concepts of the local fractional derivative and integral 
and present the local fractional Laplace type transform method. 

The local fractional derivative operator of ( )Ω τ  is defined [1-27]:
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where 0 0[ ( ) ( )] (1 ) [ ( ) ( )]∆ Ω −Ω ≅ Γ + ∆ Ω −Ωt t t tα α .
The properties of the local fractional derivative operator [1] are listed in tab. 1.
As the inverse operator of eq. (1), the local fractional integral operator of ( )θ τ  is de-

fined [1, 10, 25]:
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where 1+∆ = −j jt t t , 0,..., 1= −j N , 0 ,=t a  and =Nt b.
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integrals of the special functions
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The properties of the local fractional integral operator [1] are listed in tab. 2.
The local fractional Laplace type transform operator of ( )Ω τ  is defined [1]:
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The inverse local fractional Laplace type transform operator is defined [1]:
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where = + ∞y iα α α αµ  and ( )Re =yα αµ . 
Some properties of the local fractional Laplace type transform operator [1] are:
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When c is a constant, the properties of the local 
fractional Laplace type transform operator [1] are listed 
in tab. 3.

The computational technique applied

In this section, we introduce the basic ideas of the 
local fractional series expansion and Laplace series ex-
pansion methods. 

The series expansion method

Following the idea in [8], we consider the local 
fractional PDE in the operator form:
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t
α
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where ( ) ( , )/d= ∂n n n
t x g tα α αφ φ  and Πα  is a linear local operator with respect to x.

Let us consider:
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From eq. (12) we have:

 ( ) ( )( )+ = Πi n ix xαω ω  (13)

with the initial condition:

 ( ) ( )0 ,0=x xω φ  (14)

Finally, after determining the terms of ( )i xω , we obtain the solution of eq. (10) in the 
series form:
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The local fractional Laplace series expansion method

With the aid of the idea of the local fractional Laplace series expansion method [8], 
considering:
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we can write eq. (9):
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which leads to:
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Thus, we have the following iteration equation:
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and so on, where ( ,0)i xφ  are the initial value conditions. 
Thus, we have:
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which deduces that:
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Solving the local fractional telegraph equation

Let us consider the local fractional telegraph equation [26]:
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With the help of the idea of the local fractional Laplace series expansion method, we 
structure:
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Thus, finally, we have:
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which is in agreement with the result obtained in [26].

Conclusion

In the present work, the local fractional Laplace series expansion method was imple-
mented to present the non-differentiable solution for the local fractional telegraph equation. The 
method is accurate and efficient.
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Nomenclature

x – space co-ordinate, [m]
t – time, [s]

Greek symbols

α – fractal dimensional order, [–]
ϕ(x,t) – concentration, [ms–1]
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