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In this paper, associating with the Hirota bilinear form, the three-wave method, 
which is applied to construct some periodic wave solutions of (3+1)-dimensional 
soliton equation, is a powerful approach to obtain periodic solutions for many 
non-linear evolution equations in the integrable systems theory.
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Introduction

It is famous that integrable systems exhibit rich variety of exact solutions, such as 
soliton, periodic, rational, and complexion solutions for PDE in mathematical physics [1-
13]. Their exact solutions play an essential role in the proper understanding of qualitative 
features of the concerned phenomena and processes in different fields of non-linear science, 
such as non-linear optics, plasma physics and others. They could help us analyze the stability 
of these systems and validate the results of numerical analysis of non-linear PDE. Among 
them, the periodic solution is the one of the more important solutions to understand some of 
the natural phenomena. Here periodic solutions could be obtained through the Hirota bilinear 
form or their generalized counterparts in three-wave method [14]. The Hirota bilinear form 
plays an important role in mathematical physics and engineering fields. Once a non-linear 
PDE is written in bilinear form by a dependent variable’s transformation, then multi-soliton 
solutions, rational solutions, Wronskian and Pfaffan forms of N-soliton solution could be 
obtained [15-18].

In this paper, we consider the (3+1)-dimensional soliton equation [17, 18]:

 13 (2 2 ) 2( ) 0xz t xxx x y x x y xu u u uu u u−− + − + ∂ =  (1)

Under the transformation:

 3(ln )xxu f= −  (2)

we can change the (3+1)-dimensional soliton equation into the bilinear form:

 3(3D D 2D D D D ) 0x z y t y x f f− − =  (3)
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or, equivalently:

 3 3 2 2 3 3 0xz x z yt y t xxx y xxy x xx xy xxxyff f f ff f f f f f f f f ff− − + + + − − =  (4)

where ( , , , )f f x y z t=  and the derivatives D ,D ,Dx y z  are the Hirota operators [19] defined by:

 ' '' ' ,
( ) ( , ) ( , ) |

a b
a b
x t x x t t

D D f g f x t g x t
x x t t = =

×

∂ ∂ ∂ ∂   ⋅ = − −   ∂ ∂ ∂ ∂   
 

The (3+1)-dimensional soliton solution to eq. (1) was studied by many researchers in 
recent years. For example, its algebraic-geometrical solutions was explicitly given in the form 
of Riemann theta functions by using a non-linearized method of Lax pair. The N-soliton solu-
tion and its Wronskian form of solution have been discussed and derived by using the Hirota 
method and Wronskian technique [17]. The bilinear Backlund transformation and explicit solu-
tions have also been obtained that is based on the Hirota bilinear method [20]. Some periodic 
wave solutions have been found in [21, 22].

The aim of this paper is to study the periodic wave solutions of (3+1)-dimensional 
soliton eq. (1), which is associated with the Hirota bilinear form. Then, with the aid of the 
corresponding graphic illustration, we would give a better understanding on the evolution of 
solutions of waves. 

Describe the three-wave method

Here, we briefly show the three-wave method [14].
We now consider a non-linear PDE of the form:

 ( , , , , , ,...) 0x t y z xxp u u u u u u =  (5)

where ( , , , )u u x y z t= , p is a polynomial of u, and its various partial derivatives.
Step 1: By using the bell polynomial theories [23, 24], eq. (5) can be converted into 

Hirota bilinear form:
 (D ,D ,D ,D ,...) 0t x y z f fΗ =  (6)

where ( , , , )f f x y z t=  and the derivatives D ,D ,Dx y z  are the Hirota operators.
Step 2: Based on the Hitota bilinear of eq. (6), we assume that the solution can be 

expressed in the form:

 
1 3 1 2 4 2 3 1 2 4

3 3 1 2 4

cosh( ) cos( )
cosh( )

f a tk xk yk zk a tl xl yl zk
a tc xc yc zc

= + + + + + + + +

+ + + +  (7)

where ( 1,2,3)ia i = , ,j jk l , and ( 1,2,3,4)jc j =  are all real parameters to be determined.
Step 3: Substituting eq. (7) into eq. (6) and collecting all the coefficients about:

 3 1 2 4cosh( )tk xk yk zk+ + + , 3 1 2 4sinh( )tk xk yk zk+ + + , 3 1 2 4cos( )tl xl yl zl+ + + , 
 3 1 2 4sin( )tl xl yl zl+ + + , 3 1 2 4cosh( )tc xc yc zc+ + + , and 3 1 2 4sinh( )tc xc yc zc+ + +  
we get the coefficients of these terms to zero and a set of algebraic equations contains param-
eters.

Step 4: Solving the set of algebraic equations in the Step 3 using computer software, 
we obtain the values for involving parameters.

Step 5: Substituting these parameters into eq. (7) and corresponding transformation, 
we obtain the exact solution for original equation.
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Next, we will show the three-wave method to solve the (3+1)-dimensional soliton for a PDE.

Periodic wave solutions of (3+1)-dimensional  
soliton solutions

Based on the known Hirota bilinear eq. (4) and transformation (2), we consider:

 
1 3 1 2 4 2 3 1 2 4

3 3 1 2 4

cosh( ) cos( )
cosh( )

f a tk xk yk zk a tl xl yl zk
a tc xc yc zc

= + + + + + + + +

+ + + +  (8)

where ( 1,2,3)ia i = , ,j jk l , and ( 1,2,3,4)jc j =  are all real parameters to be determined.
To get the periodic solutions, substituting (8) into eq. (4) and collecting all the coeffi-

cients about 3 1 2 4cosh( )tk xk yk zk+ + + , 3 1 2 4sinh( )tk xk yk zk+ + + , 3 1 2 4cos( )tl xl yl zl+ + + , 
3 1 2 4sin( )tl xl yl zl+ + + , 3 1 2 4cosh( )tc xc yc zc+ + + , 3 1 2 4sinh( )tc xc yc zc+ + + , we can obtain a 

set of determining equations for ia , jk , jl , and jc :

 3 2 2 3
1 2 1 2 1 2 1 1 1 2 2 1 1 4 2 3 3 2 4 12 ( 3 3 3 2 2 3 ) 0a a k l k k l k l l k l k l k l k l k l− + − − − + + − =  

 3 2 2 3
1 2 1 2 1 2 1 1 1 2 2 1 1 4 2 3 3 2 4 12 ( 3 3 3 2 -2 3 ) 0a a k k k l l k l k l l k k k k l l l l− − − + − + + =  

 3 2 2 3
1 3 1 2 1 2 1 1 1 2 2 1 1 4 2 3 3 2 4 12 ( 3 3 3 2 2 3 ) 0a a c k c c k c k k c k c k c k c k c k+ + + − + + − =  

 3 2 2 3
1 3 1 2 1 2 1 1 1 2 2 1 1 4 2 3 3 2 4 12 ( 3 3 3 2 2 3 ) 0a a c c c k k c k c k k k k k k c c c c− + + + − + + − =  

 3 2 2 3
2 3 1 2 1 2 1 1 1 2 2 1 1 4 2 3 3 2 4 12 ( 3 3 3 2 2 3 ) 0a a c l c c l c l l c l c l c l c l c l− + − − − + + − =  

 3 2 2 3
2 3 1 2 1 2 1 1 1 2 2 1 1 4 2 3 3 2 4 12 ( 3 3 3 2 2 3 ) 0a a c c c l l c l c l l c c c c l l l l− + − + − + − + =  

 2 3
1 1 2 1 4 2 32 (4 3 2 ) 0a k k k k k k− − + = , 2 3

2 1 2 1 4 2 32 (4 3 2 ) 0a l l l l l l− + − =  

 2 3
3 1 2 1 4 2 32 (4 3 2 ) 0a c c c c c c− + =  

Solving this system of equations with the help of symbolic computation, we can pres-
ent the following solutions of parameters:
 – Case 1:

 
( )2 2 2 3 2

1 2 2 1 1 2 2 41 2
1 2 2 3 3 1 2 2 3 3

2 2

3 3
0, , , , ,

2
l c l l l l c ll la a a a a c c c c

c c
− +

= = = = − = = −  

 
2 2 2 3 2
2 1 2 1 2 2 4

4 1 1 2 2 3 3 4 4 1 1 2 2
2 2

, , , , , ,c l l l l c lc k k k k k k k k l l l l
c l
+ +

= = = = = = =  

 1 1 2 2 3 3 4 4 2 1 1, , , , 0,l l l l l l l l a k k= = = = = =  

where ( 1,3)ia i = , 2c , ( 1,2,3,4)pl p = , and ( 1,2,4)jk j =  are arbitrary constants.
 – Case 2:

 
( )2

1 2 1 4 2 4
1 1 2 3 3 1 1 2 2 3 4

2 2

4 3
, 0, , , , ,

2
k k k k c ka a a a a c k c c c c

k k
−

= = = = ± = = =  

 
( )2

1 2 1 4
1 1 2 2 3 4 4 1 1 2 2 3 3

2

4 3
, , , , , ,

2
k k k k

k k k k k k k l l l l l l
k
−

= = = − = = = =  
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( )2

1 2 1 4
1 1 2 2 3 4 4 1 1 2 2 3 3 4 4

2

4 3
, , , , , , ,

2
k k k k

k k k k k k k l l l l l l l l
k
−

= = = − = = = = =  

where ( 1,3)ia i = , 2c , ( 1,2,3,4)pl p = , and ( 1,2,4)jk j =  are arbitrary constants.
 – Case 3:

 
( )2

1 2 1 4
1 1 2 3 3 1 1 2 2 3 4 4

2

4 3
, 0, , , , ,

2
k c k c

a a a a a c k c c c c c
c
−

= = = = ± = = =  

 
( )2

1 2 1 4
1 1 2 3 4 1 1 2 2 3 3 4 4

2

4 3
, 0, , 0, , , ,

2
k c k c

k k k k k l l l l l l l l
c
−

= = = − = = = = =  

where ( 1,3)ia i = , 2c , ( 1,2,3,4)pl p = , and 1k  are arbitrary constants.
 – Case 4:

 1 2
1 1 2 2 3 1 1 2 2 3 3 4 4 1

2

, , 0, , , , , l la a a a a c c c c c c c c k
k

= = = = = = = = −  

 
( )2 2 2 3 2 2 2 2 3 2

1 2 1 2 1 2 2 4 2 1 2 1 2 2 4
2 2 3 43

2 2 2

3 3
, ,

2
l k l l l l k l k l l l l k lk k k k

k k l
− + + +

= = − =  

 
( )2

1 1 2 4
1 1 2 2 3 4 4

2

4 3
, , ,

2
l l l l

l l l l l l l
l
+

= = = =  

where ( 1,3)ia i = , 2k , ( 1,2,3,4)jc j = , and ( 1,2,4)pl p =  are arbitrary constants.
 – Case 5:

 
( )2 2 2 3 2

1 2 1 2 1 2 2 41 2
1 1 2 2 3 3 1 2 2 3 3

2 2

3 3
, , , , ,

2
l c l l l l c ll la a a a a a c c c c

c c
− +

= = = = − = = −  

 
( )2 2 2 3 22 2 2 3 2

1 2 1 2 1 2 2 42 1 2 1 2 2 4 1 2
4 1 2 2 3 3

2 2 2 2

3 3
, , ,

2
l c l l l l c lc l l l l c l l lc k k c k

c l c c
− ++ +

= = − = = −  

 
( )22 2 2 3 2

1 1 2 42 1 2 1 2 2 4
4 1 1 2 2 3 4 4

2 2 2

4 3
, , , ,

2
l l l lc l l l l c lk l l l l l l l

c l l
++ +

= = = = =  

where ( 1,3)ia i = , 2c , and ( 1,2,4)pl p =  are arbitrary constants.
Thus, we can obtain the solutions of eq. (1):

 ( )3 ln xxu f= −  (9)

where

 
( ) ( )

( )
1 3 1 2 4 2 3 1 2 4

3 3 1 2 4

cosh cos

cosh

f a tk xk yk zk a tl xl yl zl

a tc xc yc zc

= + + + + + + + +

+ + + +
 

( 1,3)ia i = , ,j jk l , and ,( 1,2 3,4)jc j =  are given in the Cases 1 to 6.
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Now, we present graphic state of some special solutions. Here we mainly analyze the 
Cases 1 and 6. 
 – Case 1: At first, we give one choice of the parameters:

 2 3 2 1 1 2 42, 3, 1, , 1, 3a a c l l l l= = = = = − =  

Then, we could obtain the following periodic solution:

 

2

2

5 76cos 3 9cosh
2 2
5 72cos 3 3cosh
2 2

5 73 sin 3 3sinh
2 2

5 72cos 3 3cosh
2 2

x y z x y z
t tu

x y z x y z
t t

x y z x y z
t t

x y z x y z
t t

   − + − − − − +   
   = +
   − + − + − − +   
   

    − + − − − − +        +
    − + − + − − +        

 (10)

Their plots when y = 1 and t = 0, 3, 5 are depicted in fig. 1, respectively, and the wave 
along different axis is shown in fig. 2.
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Figure 1. The periodic solution  
of eq. (10) with parameters  
y = 1, t = 0; (a) perspective view 
of the wave and (b) 2D-density 
plot 
(for color image see journal  
web site)
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Figure 2. The periodic solution of eq. (10) with parameters y = 1, t = 0: The wave along the 
z-axis (a) and the wave along the x-axis (b) 
(for color image see journal web site)
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 – Case 6: Second, we give one choice of the parameters:

 1 1 2 3 2 1 2 4, 2, 3, 1, 1, 1, 3a a a a c l l l= = = = = = − =  
Then, we could obtain the following periodic solution:

 

2

2

7 512cosh 6cos 3
2 2
7 54cosh 2cos 3
2 2

7 53 4sinh 2sin 3
2 2

7 54cosh 2cos 3
2 2

x y z x y z
t tu

x y z x y z
t t

x y z x y z
t t

x y z x y z
t t

   − − + − − + −   
   = − +
   − − + + − + −   
   

    − − − + + − + −        +
    − − + + − + −        

 (11)

Their plots when y = 1 and t = 0, 3, 5 are depicted in figs. 3 and 4, respectively.
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Figure 3. The periodic solution of eq. (11) with parameters y = 1, t = 5;  
(a) Perspective view of the wave and (b) 2D-Density plot 
(for color image see journal web site)

Figure 4. The periodic solution of eq. (11) with parameters y = 1, t = 5;  
(a) Perspective view of the wave and (b) 2D-Density plot 
(for color image see journal web site)
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Conclusion

In this paper, with the help of the Hirota bilinear form of the (3+1)-dimensional soli-
ton equations, we presented the periodic wave solutions through the three-wave method. The 
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new periodic wave solutions of the (3+1)-dimensional soliton equation are obtained and some 
special solutions were illustrated to help us be better to understand the evolution of solutions 
of waves. The performances of the methods afore mentioned are substantially influential and 
absolutely reliable for finding new exact solutions of other NPDE. 
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Nomenclature

ai (i = 1, 2, 3) – co-ordinates, [s–1]
cj (j = 1, 2, 3, 4) – co-ordinates, [s–1]
Dx, Dy, Dz – the Hirota operators, [K]
f(x, y, z, t) – dependent variable, [K]
g(x, y, z, t) – dependent variable, [K]

kj (j = 1, 2, 3, 4) – co-ordinates, [s–1]
lj (j = 1, 2, 3, 4) – co-ordinates, [s–1]
t – time co-ordinate, [s]
u(x, y, z, t) – dependent variable, [K]
x, y, z – space co-ordinate, [m]
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