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Constructing integrable systems and solving non-linear partial differential equa-
tions are important and interesting in non-linear science. In this paper, Ablow-
itz-Kaup-Newell-Segur (AKNS)’s linear isospectral problem and its accompanied 
time evolution equation are first generalized by embedding a new non-isospectral 
parameter whose varying with time obeys an arbitrary smooth enough function of 
the spectral parameter. Based on the generalized AKNS linear problem and its evo-
lution equation, a new non-isospectral Lax integrable non-linear AKNS model is 
then derived. Furthermore, exact solutions of the derived AKNS model is obtained 
by extending the inverse scattering transformation method with new time-varying 
spectral parameter. In the case of reflectinless potentials, explicit n-soliton solu-
tions are finally formulated through the obtained exact solutions.
Key words: non-isospectral integrable non-linear AKNS model, AKNS linear 

problem, Lax integrability, inverse scattering transformation  
method, soliton solution

Introduction

There are two sets of non-linear PDE in soliton theory, they are the isospectral equa-
tions and non-isospectral equations. The isospectral PDE often describing solitary waves in 
lossless and uniform media, while the non-isospectral PDE describe the solitary waves in a 
certain type of non-uniform media. Starting from a proper linear spectral problem and its time 
evolution equation one can derive a whole hierarchy of isospectral PDE if the associated spec-
tral parameter is independent of time. While non-isospectral non-linear PDE are usually result-
ed from the same linear spectral problem and its time evolution equation equipped with a time 
dependent spectral parameter.

The AKNS linear problem [1] consists of two parts, one is the spectral equation:

 x Mφ φ= ,   
ik q

M
r ik
− 

=  
 

,   1

2

φ
φ

φ
 

=  
 

 (1)

the other is the time evolution equation of eigenfunction φ :

 t Nφ φ= ,   
A B

N
C A
 

=  − 
 (2)
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where i is the imaginary unit, k is the spectral parameter independent of x, ( , )q q x t= , ( , )r r x t=  
and their derivatives of any order with respect to x and t are smooth functions which vanish as 
x tends to infinity, and A, B, C are undetermined functions of x, t, q, r, and k. If a non-linear PDE 
is derived from the compatibility condition xt txφ φ=  of eqs. (1) and (2), i. e.:

 [ , ] 0t xM N M N− + =  (3)

then the equation is called Lax integrable.
In 1991, Ablowitz and Clarkson [2] set 0tk =  (isospectral) and then derived a hierar-

chy of isospectral integrable non-linear PDE from eq. (3), that is the famous AKNS isospectral 
hierarchy, which can be written [1]:

 n

t

q q
L

r r
−   

=   
   

, ( 0,1,2, )n =   (4)

Here the operator L is defined by:
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q
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 (5)

It is easy to see that when 1r = −  and 2n =  eq. (4) reduces to the celebrated Korte-
weg-de Vries (KdV) equation – a mathematical model of waves on shallow water surfaces:

 6t xxx xq q qq= +  (6)

Letting (2 ) /2n
tik ik=  (non-isospectral), from eq. (3) one can derive a non-isospectral 

AKNS hiearchy [1]:

 n

t

q xq
L

r xr
−   

=   
   

,   ( 0,1,2, )n =   (7)

Recently, Zhang and Gao [3], Zhang and Li [4, 5] derived three non-isospectral AKNS 
systems:
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from eq. (3) equipped with three different non-isospectral parameters, k, which satisfy 
2e /2ik

tik = , sin(2 )/2tik ik= , and 1(1 2 ) /2tik ik −= + , respectively.
Since the non-isospectral PDE appearance, integrable equations have been substan-

tially enriched. In the past several decades, constructing non-isospectral integrable non-linear 
PDE has attached much attention like those in [6-8]. In the present paper, on one hand we em-
bed a non-isospectral parameter k satisfying:

 ( )tik f ik= −  (11)
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into eq. (3) for constructing a new and more general non-isospectral integrable non-linear 
AKNS model which includes infinite number of terms:
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where ( )f ik  is an arbitrary smooth enough function of ik. On the other hand, we exactly solve 
such a non-isospectral AKNS model (12) by extending the inverse scattering transformation 
(IST) method with new time-varying spectral parameter (11). It should be noted that eq. (12) is 
more general than eqs. (8)-(10). Especially, when ( )f ik  is taken as 2e /2ik− , sin(2 )/2ik−  and 

1(1 2 ) /2ik −− +  eq. (11) gives the non-isospectral AKNS sytems (8)-(10), respectively.
As to what is integrable, there is no a uniform definination. The KdV eq. (6) is inte-

grable in various senses such as Lax integrability, Liouville integrability and so on. There is a 
close relation between the existence of soliton solutions and the integrability of non-linear PDE, 
the known research results show that all the integrable systems exist soliton solutions [9]. From 
then when the soliton phenomena were first observed in 1834 and the KdV equation was exactly 
solved by the IST method [10], finding soliton solutions of non-linear PDE has become one of 
the most exciting and extremely active areas of research. With the development of fractional-or-
der differential calculus [11-14], fractional PDE have been received more and more attention. In 
2010, Fujioka et al. [15] described soliton propagation of an extended non-linear Schrodinger 
equation which incorporates fractional dispersion and a fractional non-linearity. Recently, Yang 
et al. [16] modeled fractal waves on shallow water surfaces via a local fractional KdV equation. 
Inspired by Gardner et al. [10] pioneer work in 1967, the IST method has developed to a sys-
tematic method for solving non-linear PDE and received a wide range of applications, see [1-8, 
17, 18], for examples. In 1976, the IST was extended to non-isospectral integrable non-linear 
PDE [17]. Serkin et al. [18] found non-autonomous solitons in the framework of the IST with 
time-varying spectral parameter. However, to the best of our knowledge, the IST has not been 
extended to such a model (12) associated with the non-isospectral parameter (11).

Derivation and Lax integrability of new  
non-isospectral AKNS model

This section is based on the generalized AKNS linear spectral problem (1) and its 
time evolution eq. (2) equipped with a new non-isospectral parameter (11) to construct the new 
non-isospectral AKNS model (12). We have the following Theorem 1.

Theorem 1. The non-isospectral AKNS model (12) is Lax integrable, which can be 
derived from the compatibility condition (3) equipped with non-isospectral parameter (11) and 
the functions A, B, and C in eq. (2) are determined by:
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Proof. Firstly, from eq. (3) we have:
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 x tA qC rB ik= − − ,   2 2t xq B ikB qA= + + ,   2 2t xr C ikC rA= − −  (16)

which can be rewritten:
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t

q
S

r →∞

 
= 

 
,   

( )
+1

1 1 0

(0)(2 ) (2 ) (2 )
!

jn n n
s in s n s j

n
s s js i

b b xqfS L ik ik ik
c c xrj

− −

= = =

− − −     
= − −     

    
∑ ∑ ∑  (17)

by using eqs. (13) and (14).
We next substitute eq. (14) with the asymptotic condition (15) into eq. (17) and have:
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by comparing the coefficients of 2ik  in the second equation of eq. (17).
Finally, from eq. (17) and the second equation of eq. (18) we obtain eq. (12). Thus, eq. 

(12) is a Lax integrable system and the proof is end.

Solutions through extending IST with  
new time-varying spectral parameter

In this section, we solve the non-isospectral AKNS model (12) by extending the IST 
method with the new time varying spectral parameter (11). We have the following Theorems 2 
and 3.

Theorem 2. Supposing that the AKNS linear spectral problem (1) is equipped with the 
non-isospectral parameter (11), then its scattering data:

 { ( )j tκ ,  ( )jc t ,  ( , )( , )
( , )

a k tR k t
b k t

= ,  }1,2, ,j n= ⋅ ⋅ ⋅  (19)

 { ( )m tκ ,  ( )mc t ,  ( , )( , )
( , )

a k tR k t
b k t

= ,  }1,2, ,m n= ⋅ ⋅ ⋅  (20)

possess the following time dependence:

 ( ) ( ( ))jt ji t f i tκ κ= − ,  0
(2 ( ))d2 2( ) (0)e

t
jf i w w

j jc t c
κ∫= ,  ( , ) ( ,0)a k t a k= , ( , ) ( ,0)b k t b k=  (21)

 ( ) ( ( ))mt mi t f i tκ κ= − ,  0
(2 ( ))d2 2( ) (0)e

t
mf i w w

m mc t c
κ∫= ,  ( , ) ( ,0)a k t a k= ,  ( , ) ( ,0)b k t b k=  (22)

where 2 (0)jc , 2 (0)mc , 2 (0)jκ , 2 (0)mκ , ( ,0) ( ,0)/ ( ,0)R k b k a k= , ( ,0) ( ,0)/ ( ,0)R k b k a k=  are the scat-
tering data of eq. (1) in the case of ( ( ,0), ( ,0))Tq x r x .

Theorem 3. Supposing that:

 ( , ) ( , ) ( , )TW x t E P x t P x t= + ,  ( )( ) ( )
( , ) e j mi xj m

j m n n

c t c t
P x t κ κ

κ κ
−

×

 
=  

−  
 (23)

then the non-isospectral AKNS model (12) has the following n-soliton solutions:

 1( , ) 2tr( ( , ) ( , ) ( , ))Tq x t W x t x t x t−= Λ Λ ,  
1

1

d dtr( ( , ) ( , ) ( , ))
d d( , )

tr( ( , ) ( , ) ( , ))

T

T

W x t P x t P x t
x xr x t

W x t x t x t

−

−= −
Λ Λ

 (24)

where tr( )⋅  denotes the trace of a given matrix, E is a n n×  unit matrix.
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Proof of Theorem 2. Since ( , ) ( , ) ( , )tP x k x k N x kφ φ= −  is also a solution of eq. (1), 
there exist two functions ( , )t kω  and ( , )t kϑ  so that:

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )t x k N x k k t x k k t x kφ φ γ φ τ φ− = +  (25)

where ( , )x kφ  also satisfies eq. (1) but is independent of ( , )x kφ .
Firstly, we take the discrete spectral (Im 0)j jk κ κ= > . Since ( , )jxφ κ  decays expo-

nentially while ( , )x kφ  must increase exponentially as x →+∞, we then have ( , ) 0k tτ = . Thus, 
eq. (25) is simplified:

 ( , ) ( , ) ( , ) ( , )t j j j jx N x t xφ κ φ κ γ κ φ κ− =  (26)

Using the inner product 2 1( ( , ), ( , ))j jx xφ κ φ κ  to left-multiply eq. (26) yields:

 2 2
1 2 1 2 1 2

d ( , ) ( , ) [ ( , ) ( , )] 2 ( , ) ( , ) ( , )
d j j j j j j jx x C x B x t x x
t
φ κ φ κ φ κ φ κ γ κ φ κ φ κ− + =  (27)

Presuming ( , )jxφ κ  to be the normalization eigenfunction in advance and noting that

 2
1 22 ( , ) ( , )d 1j j jc x x xφ κ φ κ

∞

−∞

=∫  

we have:

 2 2 2
1 2( , ) [ ( , ) ( , )]dj j j jt c C x B x xγ κ φ κ φ κ

∞

−∞

= − +∫  

which can be rewritten as [3-5]:

 2 2 2
2 1( , ) (( ( , ), ( , )) , ( , ) )T T

j j j jt c x x B Cγ κ φ κ φ κ= −  (28)

From eq. (1) we have:

 1 1 2( , ) ( , ) ( ) ( , )x j j j jx i x q x xφ κ κ φ κ φ κ+ = , 2 2 1( , ) ( , ) ( ) ( , )x j j j jx i x r x xφ κ κ φ κ φ κ− =  (29)

and hence obtain 2 2
1 2 2 1[ ( , ) ( , )] ( ) ( , ) ( ) ( , )j j x j jx x q x x r x xφ κ φ κ φ κ φ κ= + , the integration with re-

spect to x from −∞ to +∞ of which gives:

 2 2
2 1 1 2[ ( ) ( , ) ( ) ( , )]d [ ( , ) ( , )] d 0j j j j xq x x r x x x x x xφ κ φ κ φ κ φ κ

∞ ∞

−∞ −∞

+ = =∫ ∫  (30)

In the other hand, we rewrite the second equation of eq. (14) as:
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and then obtain:
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through introducing the conjugation operator of L :
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 * 12 ( , )
r

L q r
q

σ −− 
= − ∂ + ∂ 

 
,   L Lσ σ=  (33)

and using the result:

  * 2 2 2 2
2 1 2 1 2

1( ( , ), ( , )) , (2 ) ( ( , ), ( , )) ,
2 ( )

j s T j s T
j j j j j

j

xq xq
L x x i x x

xr xr c t
φ κ φ κ κ φ κ φ κ− −      

= = −      
      

 (34)

Thus, eq. (26) is simplified:

 1( , ) ( , ) (2 ) ( , )
2t j j j jx N x f i xφ κ φ κ κ φ κ− =  (35)

Noting that:

 
(2 ) 0

0 (2 )
j

j

f i x
N

f i x
κ

κ
 

→  − 
 (36)

 
0

( , ) e
1

ji x
j jx c κφ κ

 
→  

 
,   

0 0
( , ) e ( ) e

1 1
j ji x i x

t j jt jt jx c ix c tκ κφ κ κ
   

→ +   
   

 (37)

as x →+∞ , then from eqs. (35)-(37) we have:

 (2 )jt ji f iκ κ= − ,   1 (2 )
2jt j jc f i cκ=  (38)

In a similar way, we obtain:

 (2 )mt mi f iκ κ= − ,   1 (2 )
2mt m mc f i cκ= −  (39)

Secondly, we consider k as a real continuous spectral. As did in [3-5], we can derive:

 d ( , ) 0
d

a k t
t

= ,   d ( , ) 0
d

b k t
t

= ,   d ( , ) 0
d

a k t
t

= ,   d ( , ) 0
d

b k t
t

=  (40)

Finally, from eqs. (38)-(40) we arrive at eqs. (21) and (22). The proof is end.
Proof of Theorem 3. Given the scattering data (19)-(22) to the spectral problem (1), 

the non-isospectral AKNS model (12) has exact solutions:

 1( , ) 2 ( , , )q x t K x x t= − ,   2

1

( , , )( , )
( , , )

xK x x tr x t
K x x t

=  (41)

where 1 2( , , ) ( ( , , ), ( , , ))TK x y t K x y t K x y t=  satisfies Gel’fand-Levitan-Marchenko integral equa-
tion:

 
0 0

( , , ) ( , ) ( , ) ( , )d
1 1 x

K x y t F x y t F z x t F z y t z
∞   

− + + + + +   
   

∫  

 ( , , ) ( , ) ( , )d d 0
x x

K x s t F z s t F z y t z s
∞ ∞

+ + + =∫ ∫  (42)

with 
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 2

1

1( , ) ( , )e d e
2

j
n

i xikx
j

j
F x t R k t k c κ

∞

=−∞

= +
π ∑∫ ,   2

1

1( , ) ( , )e d e
2

j
n

i xikx
j

j
F x t R k t k c κ

∞
−−

=−∞

= −
π ∑∫  (43)

To construct soliton solutions, we set ( , ) ( , ) 0R k t R k t= = . In this reflection less potentials case, 
as did in [3-5] we can obtain:

1
1( , , ) tr( ( , ) ( , ) ( , ))TK x y t W x t x t y t−= − Λ Λ ,  1

2 ( , , ) tr( ( , ) ( , ) ( , ) ( , ))TK x y t i W x t P x t x t y t−= Λ Λ  (44)

where 1 2
1 2( ( )e , ( )e , , ( )e )ni xi x i x T

nc t c t c t κκ κΛ =  , 1 2
1 2( ( )e , ( )e , , ( )e )ni xi x i x T

nc t c t c t κκ κ −− −Λ =  .
Substituting eq. (44) into eq. (42), we finally obtain the n-soliton solutions (24). We 

therefore finish the proof.

Conclusion

In summary, we have generalized the AKNS spectral problem (1) and its evolution 
eq. (2) by embedding a non-isospectral parameter (11), which varies with time obeying an ar-
bitrary smooth enough function of the spectral parameter. Starting from the generalized AKNS 
spectral problem (1) and its evolution eq. (2), together with (5), we constructed a new and more 
gerneral non-isospectral AKNS model (12) with infinite number of terms. In order to solve the 
derived non-isospectral AKNS model (12), the IST method with the new time-varying spectral 
parameter (11) is employed. As a result, exact solutions (41) are formulated and then reduced 
to explicit n-soliton solutions (24) in the case of reflectionless potentials. To the best of our 
knowledge, the derived non-isospectral AKNS model (12) and the obtained exact solutions (41) 
and n-soliton solutions (24) have not been reported in literatures. 
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Nomenclature
d/dt – first derivative, [–]
E – n n×  unit matrix, [–]
e – base of natural logarithms, [–]
i – imaginary unit, [–]
j – natural number, [–]
k – spectral parameter, [–]
M, N – matrices, [–]

n, n  – positive integers, [–]
s – positive integer, [–]
T – transposition, [–]
t – time, [s]
x, y, z – displacements, [m]

Greek symbols

π – circumference ratio, [–]
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