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This study investigates the ultraslow diffusion by a spatial structural derivative, in 
which the exponential function ex is selected as the structural function to construct 
the local structural derivative diffusion equation model. The analytical solution of 
the diffusion equation is a form of Biexponential distribution. Its corresponding 
mean squared displacement is numerically calculated, and increases more slow-
ly than the logarithmic function of time. The local structural derivative diffusion 
equation with the structural function ex in space is an alternative physical and 
mathematical modeling model to characterize a kind of ultraslow diffusion.
Key words: ultraslow diffusion, spatial structural derivative, structural function, 

exponential function, Biexponential distribution

Introduction

Anomalous diffusion [1, 2] has attracted great attention in diverse fields, such as frac-
tal porous media [3], polymer materials [4], and biomedical engineering [5], just to mention a 
few. The mean squared displacement (MSD) of anomalous function is a power law function of 
time [6, 7]: 

 ( )2x t tη∝   (1)

when 1η >  characterizes super-diffusion, when 1η <  is a sub-diffusion, and it is a Brownian 
motion when 1η =  [8]. Anomalous diffusion is non-Markovian non-locality movement, so it 
must consider the temporal correlation and spatial correlation of the motion process, which can 
be used to introduce fractional calculus and deal with it by the fractional differential equation 
[9, 10].

Unlike the aforementioned anomalous diffusion, ultraslow diffusion also behaves in a 
dramatically different way from the normal Brownian motion and is widely observed in nature 
and engineering. As an important branch of mathematics, fractional calculus has been widely 
studied [11] and applied in many fields [12], but it is incapable of ultraslow diffusion which 
diffuses even far slower than the sub-diffusion [13], the MSD of ultraslow diffusion is often 
characterized by a logarithmic function of time in literature:
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 ( ) ( )2 ln , 0x t t α α >∝   (2)

when 4α =  the MSD (2) reduces to the classical Sinai diffusion law [14]. When 0.5α = , it is 
correlated with the well-known Harris law [15]. 

In order to provide more generalized description of ultraslow diffusion, the structural 
derivative modeling methodology was proposed [16], in which the structural function is chosen 
as the inverse Mittag-Leffler function of time. Its corresponding diffusion MSD is 

( )2 1 ( )[ ]x t E t λ
α
−∝ , 0λ > , where 1( )E tα

−  is the inverse of Mittag-Leffler. Instead of time inverse 
Mittag-Leffler function ultraslow diffusion model, this study proposes a spatial structural deriv-
ative ultraslow diffusion model via the structural derivative in space, in which the exponential 
function ex  is chosen as the structural function. The analytical solution of the diffusion model 
is derived by the scaling transform, and the features of its MSD are further analyzed.

Methodologies

Structural derivative

The structural derivative is an extension of the Hausdorff derivative. According to 
scaling transforms, the definition of the Hausdorff fractal distance in 1-D can be given [17]:
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Suppose a particle moves uniformly along a curve, the displacement l in Hausdorff 
fractal time can be redefined [18]:

 ( )0l v t t α= −   (4)

The corresponding derivative of displacement in eq. (4) can be obtained:
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Then the Hausdorff derivative on time is given:
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The derivative of displacement l under structural time metric is given [18]:

 ( ) 0d d , 0l v s t t= =     (7)

In analogy with the above structural time derivative, the structural derivative in space 
can be defined [19]:
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= =

−
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where S denotes the structural derivative, and ( )f x  is the structural function. 
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The definition of the global structural derivative in space can be derived from the 
global structural derivative in time [19]:

 
1

( , ) ( ) ( , )d
x

s x

p x t f x p t
x x

δ τ τ τ
δ

∂= −
∂ ∫  (9)

which degenerates into the Riemann-Liouville fractional derivative when ( ) / (1 )f x x α α−= Γ −  [20].
The classical derivative modeling strategy depicts the particular factors on the rate of 

the change of time or space variables, but less considers the important influence of the mesoscop-
ic structure of time-space fabric of the complex system on its physical behaviors. While in the 
structural derivative, the structure function depicts the time-space inherent property of the system, 
which is a space-time transformation [21]. Consequently, the structural derivatives can describe the 
causal relationship between the mesoscopic space-time structure and the specific physical quantity.

Spatial structural derivative equation model  
for ultraslow diffusion

According to the local structural derivative, we establish the spatial structural deriva-
tive model for ultraslow diffusion:

 d d d
d d ds s

p pK
t x x

 
=  

 
 (10)

where K  is the diffusion coefficient. When the structural function ( )f x x= , eq. (10) yields a 
Gaussian distribution [22]: 

 ( )
21, exp

44
xp x t
KtKt

 
= − 

π  
 (11)

When ( )f x xβ= , the solution of eq. (10) is a stretched Gaussian distribution:

 ( )
21, exp

44
xp x t
KtKt

β 
= − 

π  
 (12)

When ( ) xf x e= , the corresponding structural derivative is stated:

 ( ) ( )
11

1, ,d lim
d x xx x

s

p x t p x tp
x e e→

−
=

−
 (13)

and the corresponding solution of eq. (10) can be derived:

 ( )
21, exp

44

xep x t
KtKt

 
= − 

π  
 (14)

Substituting the eq. (14) into eq. (10) can easily verify:

 ( ) ( )
2

2 2

d ,d 1 1 d,
d d 2 4 d

x

x x

p x t ep x t
e e Kt K t K t

   
= − − =  

  
 (15)

Namely, eq. (14) is the solution of eq. (10), in which the structural function is an expo-
nential function. Equation (14) is a new kind of distribution, called the Biexponential distribu-
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tion in this paper. The relationship between the structural function and the solution of structural 
derivative diffusion equation in space is derived: 

 ( )
( ) 2

1, exp
44

f x
p x t

KtKt

    = − 
π   

 (16)

Generally speaking, the spatial structural 
derivative is a modeling strategy and can be em-
ployed in modeling ultraslow diffusion phenom-
ena in complex fluids. It is solution of the corre-
sponding structural derivative diffusion equation 
constructed by the arbitrary structural function 
in the local structural derivative in space is sta-
tistical distribution, i. e., the probability density 
function.

Figure 1 is the probability density function 
described of Gaussian and Biexponential distribu-
tion with 0, 1, 0.5x t K> = = . From the simulation 
results, we can see that the Biexponential distribu-
tion decreases more rapidly than Gaussian distri-
bution in a short time. That means that compared 

with the probability of specify random variables falling in a specific range, the Biexponential 
distribution of tailing phenomenon is more evident. 

Results and discussions

In this section, we numerically compute the MSD of the proposed ultraslow diffusion 
model, and then explore the transient diffusion behavior by comparing with the normal diffu-
sion, sub-diffusion, super-diffusion, and the proposed ultraslow diffusions. Figure 2 shows the 
differences of various diffusion processes.

In fig. 2, the yellow (1) area represents the super-diffusion process, the corresponding 
MSD is 2 ( ) ( 1) , 1x t t β β+ >= . The blue (3) and the green (2) areas, respectively, belong to 
the ultraslow diffusion and sub-diffusion. 
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Figure 1. The probability density  
function = =1, 0.5t K
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Figure 2. Schematic diagram of normal 
diffusion, sub-diffusion, super-diffusion, 
and the exponential structural derivative 
ultraslow diffusion, in which the proposed 
ultraslow diffusion and sub-diffusion is 
separated by the logarithm ultraslow 
diffusion ( ) ( )= +2 ln 1x t t  dotted with +, 
and the normal diffusion ( ) =2x t t  curve 
divides sub-diffusion and super-diffusion 
dotted with *
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The MSD of the proposed exponential function ultraslow diffusion can be derived 
from eq. (14):

 ( )
2

2 2 2

- -

1
( ) , d exp d

44
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x t x p x t x x x

KtKt
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= = −
π
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Its analytical solution can not directly be obtained, instead we define the MSD in 
(0, )+ ∞  and calculate the following integral form:
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Figure 3 shows the MSD of normal diffu-
sion, logarithm ultraslow diffusion and the 
present exponential structural function ul-
traslow diffusion. We can observe from fig. 3 
that the MSD of the proposed ultraslow diffu-
sion increases slower with time than that of the 
logarithmic diffusion. Thus, the local structural 
derivative diffusion equation with the structural 
function ( ) xf x e=  in space is a mathematical 
modeling method to characterize a kind of ul-
traslow diffusion.

It is worthy of noting that the expo-
nential function ( ) xf x e=  is a special case of 
the popular Mittage-Leffler function:

 ( ) ( )0 1

k

k

xE x
kα α

∞

=

=
Γ +∑  (19)

when 1α = , it degenerates into the exponential 
function.

In recent years, the Mittage-Leffler function has widely been used in the fractal dy-
namics, anomalous diffusion and fractal random field [23-25]. In addition, the inverse Mit-
tage-Leffler function as has also been applied to describe ultraslow diffusion [21]. In further 
study, we will try to investigate different structural functions with clear physical mechanism, 
such as Mittag-Leffler function and its inverse function, to construct both local and global struc-
tural derivative diffusion equation in modeling non-Gaussian motion.

Conclusions

In this paper, we present a local spatial structural derivative diffusion model to depict 
the ultraslow diffusion, in which the exponential function xe  is selected as the structural func-
tion. Based on the foregoing results and discussions, the following conclusions can be drawn.

 y The analytical solution of the proposed ultraslow diffusion equation is a form of Biexponen-
tial distribution.

 y The corresponding mean squared displacement is numerically calculated, and increases 
more slowly with than that of the logarithmic ultraslow diffusion. 

 y The local structural derivative diffusion equation with the structural function xe  in space is 
an alternative mathematical modeling method to characterize a kind of ultraslow diffusion.
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Nomenclature
( )E tα  –  Mittag-Leffler function 1( )E tα

−  – inverse Mittag-Leffler function
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