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In this article, we present a natural boundary element method (NBEM) to solve the 
steady heat flow problem with heat sources in a coal seam. The boundary integral 
equation is derived to obtain the temperature filed distribution of the coal seam 
under the different injecting conditions.
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Introduction

The coal-bed methane is an unconventional natural gas occurred within coal, which 
is one of important clean energies and high-quality chemical materials [1]. It is mainly com-
posed of CH4, generally about 95%, and N2, CO2 and other substances [2]. China’s potentials in 
coal-bed methane are very huge, and ranking second in the world, fig. 1, [3]. Coal-bed methane 
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drainage mining, can fundamentally are adopted to prevent and control coal mine gas accident 
[4-6], protect the atmospheric environment, and solve the problems of shortages of oil and gas 
resources in the world [7].

Unlike US, Australia and other coal producing countries, China’s coal seams have 
been very low permeability [8]. It restricts the gas desorption and flow, so the coal-bed methane 
has not been formed in the industrial scales in China.

Temperature plays an important role in coal fracture, coal-bed methane adsorption, 
desorption and seepage [9-12]. Laboratory tests and filed investigations showed that increasing 
temperature of coal seam could improve the coal-bed permeability and enhance the coal-bed gas 

production effectively. The heat 
injection is an advanced increas-
ing production technique with a 
great future potential shown in 
fig. 2. There are three feasible 
ways to heat the coal seam, i. e. 
injecting high temperature steam, 
burning coal body and direct cur-
rent heating. No matter what kind 
of technology, the most important 
thing is to predict the temperature 
filed distribution of the coal seam.

In this paper, our aim is to 
present a natural boundary ele-
ment method (NBEM) to solve 
the steady heat flow problem with 
the heat sources in a coal seam. 

Two production-increasing mechanisms of the injection

There are two production-increasing mechanisms of heat injection.
(1)	Coal-bed gases exist in the forms of free gas, adsorbed gas on coal surface, and adsorbed 

gas in coal matrix, fig. 3. After injecting high temperature steam, a large amount of heat is 
diffused into the coal seam, which increases the temperature of the coal body. The methane 
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molecules in the coal seam absorb heat. Their kinetic energy increases, and the thermal 
motion becomes intense, which make them released from the coal matrix and surface to the 
free gas. High temperature can enhance the desorption capacity of methane molecules, and 
increase the rate of desorption at the same time.

	 Desorbed coal-bed methane diffuses outward to the fractures through the coal matrix and 
pores. In this process, the coal-bed methane absorbs quantity of heat to increase its intrinsic 
energy. The increase of a large number of desorbed gas molecules leads to the gas concen-
tration. More coal-bed methane diffuses into the fracture network, and the gas pressure 
increases in the effect of the concentration gradient.

(2)	When the high temperature steam is injected into the coal seam, the crack is initiated, ex-
panded and connected by the gas pressure. At the same time, thermal fracture will also be 
produced by the high temperature. The thermal cracking can provide the channels for the 
high temperature water-gas mixture, which would promote the further fracturing of the coal. 
Coupled with the role of the stress field, coal seam cracks connect each other to form the 
complex fracture network, thereby changing the coal seam permeability. The gas production 
would be enhanced in the temperature, stress and seepage fields in the coupling effect.

The MTS816 rock test system and heat injection system were used to study the evo-
lution of the fractures in lignite under three cases, i. e. water injection, gas injection and high 
temperature steam injection, fig. 4. The results show that more fractures are produced under the 
high temperature injection. When water is injecting, a large fissure is generated, and the mi-
cro-cracks are less in the coal body. Under gas injecting situation, the coal produced two macro 
cross-cracks, and micro-cracks become more relatively. Contrastingly, high temperature steam 
could make the coal produced the most cracks, and form a complex fracture network system.

Field test was also conducted in China Pingdingshan Group, the results show the 
mixed gas flow increased from 0.0015 m3/min to 0.179 m3/min after heat injection, while meth-
ane gas flow went up from 0.0015 m3/min to 0.023 m3/min, an increase of 13.3 times, see fig. 5.
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Figure 4. Fractures in lignite under water injection, gas injection and high 
temperature steam injection

Temperature filed distribution of coal  
seam under different injecting conditions

In order to evaluate the effect of heat injection on the gas production enhancement, 
the temperature distribution of the coal seam must be predicted. According to the engineering 
investigation, it can be simplified as the thermal conduction in steady state of heating sources. 
The two-dimensional model for the first-class boundary condition to investigate the heat con-
duction process inside the coal seam with heat injection can be given as [13, 14]:
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where T  is the temperature in coal seam,  
f  – the strength of heat source power W  di-

vided by the thermal conductivity λ  of coal 
given by /f W λ= , and 0T  is the temperature 
of the heat source on the surface Γ in injec-
tion holes.

According to Fourier series, NBEM 
can be applied to the Dirichlet boundary 
problem. If we find a specific solution ω , 
eq. (1) is equivalent to the following equa-
tion [15, 16]:

	
2

0 0

0u
u T ωΓ

 −∇ =
 = −

	 (2)

where u T ω= − , and 0ω  is the boundary value of ω  on Γ.
Based on the complex variable method, the real and imaginary parts of any analytic 

function are the solutions of the harmonic equation. Power function is a kind of analytic func-
tion, so we have:

	 ( i ) exp(i )n nx y r nω ϕ= + = 	 (3)

where r, ϕ ∈Ω .
From eq. (3), Re( ) cosnr nω ϕ=  and Im( ) sinnr nω ϕ=  are both solutions of the har-

monic equation, so any linear combination is also its solution, which is expressed as [17]:
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∞

=
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where r, ϕ ∈Ω .
The general solution of the harmonic equation in plane polar co-ordinates system has 

a form of variables separation given as [17]:

	 0 0
1
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where ,r ϕ ∈Ω, and 0C , 0D , nA , nB , nC , nD  are all undetermined coefficients.
Equation (5) can be given in the series form [17]:
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In a circle area, 0ln( )D r  does not exist. Thus, the general solution in unit circle is 
expressed as:

	 i

-
( ) (1, ) e n
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Figure 5. Gas flow change after the heat injection in 
a coal seam
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Suppose that 0u pu=  and ie n
np p θ

∞

−∞

= ∑ , then we get 2n
n n na r p a= π . 

Thus, we have:
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From eqs. (7)-(8), we have the boundary integral equation of the harmonic equation 
in unit circle, which is given:
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Generalize eq. (9) to the circle area of radius R. We get the boundary integral equation 
of eq. (2) in the form:
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Because 

	 ( , , , ) ( , )d dG r r f r rω θ θ θ θ
Ω

′ ′ ′ ′ ′ ′= ∫∫ 	

is a particular solution of eq. (1) [17], we finally get the solution of the heat conduction in a coal 
seam under the heat injection:
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where ( , , , )G r rθ θ′ ′  is the Green function (GF), which was given:
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Making use of eqs. (10) and (11), we can obtain the temperature distribution of the 
coal seam under different injecting conditions shown in fig. 6.

Efficiency evaluation of heat injection

When the high temperature steam is injected into the coal seam, the heat is absorbed 
by the coal-bed gas molecules in the heating zone, see fig. 7. The molecular activity and kinetic 
energy increase. A large amount of gas molecules are desorbed from the coal matrix and frac-
ture surface. The energy dissipation at the front of the heating zone is absorbed by the coal-bed 
methane and becomes the power of the coal-bed methane desorption. The desorption rate of the 
coal-bed methane decreases with the diffusion radius of the heat zone. The coal-bed methane is 
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continuously desorbed from the coal seam and the gas concentration is increased and diffused 
into the coal fissure under the effect of the concentration gradient. In the non-heating zone, the 
coal-bed methane temperature does not change, and the rate of desorption remains unchanged.

The heat in desorption of the coal and coal-bed methane in the heating zone can be 
expressed as:

	 ( ) [ ]
2

d 0
0 0

1 ( , ) d d
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  
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where HR  is the radius of the heating zone, gf  – the quality fraction of coal-bed methane in coal 
seam, gM  – the molar mass of coal bed methane, A – the area of the coal-bed methane desorp-
tion, and cρ , cC , gρ , and gC  are density and specific heat of coal and gas, respectively.

The efficiency of heat injection is given by:

	 d

in

Q
Q

η = 	 (14)

where inQ  is the total injecting heat, η  – the efficiency of heat injection, and dQ  – the heat in 
desorption of the coal and coal-bed methane.

Conclusion

In our work, we addressed two production-increasing mechanisms of the heat injec-
tion. With the help of NBEM, we handled the heat flow problem with heat sources in a coal 
seam. Enhancing the desorption capacity of methane molecules and thermal cracking are two 
major mechanisms for promoting the gas extraction under the heat injection. The boundary 
integral equation is proposed to obtain the temperature distribution of the coal seam in different 
injecting conditions. The efficiency of the heat injection was also suggested.
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A	 –	area of coal-bed methane desorption, [m2]
Cc	 –	specific heat of coal, [Jmol–1K–1] 
Cg	 –	specific heat of gas, [Jmol–1K–1] 
Mg	 –	molar mass of coal-bed methane, [kg mol–1]
RH	 –	radius of the heating zone, [m]
T	 –	temperature, [℃] T0	 –	 injecting 

temperature, [℃]
W	 –	strength of heat source power, [Wm–3]

Greek symbols

λ	 –	thermal conductivity, [Wm–1℃–1]
ρc	 –	density of coal, [kgm–3]
ρg	 –	density of gas, [kgm–3]
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