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In order to improve the accuracy of simulation, the lattice Boltzmann method was
adopted to get the thermal conductivities of 3-D nanograins. For the wide applica-
tion, the length of nanograins axis is between 1 nm to 9 nm, and the diameter ratio
of gap to spherical segment is 0.2 to 0.9, 30 sets of results of numerical simulation
were taken. Correlations were fitted from the results of numerical simulation by
multiple linear regression analysis. Then, in the range of temperature between 294
K to 700 K, the temperature value was taken every 50 K. Then final fitted formula of
thermal conductivity for nanograins was got by the binomial fitting method. The re-
sults of fitted formula agree well with the numerical results. The results show that
the thermal conductivities decrease with the diameter of nanograins reducing
within the 3-D spherical segment when the diameter ratio, 5, of the gap to spherical
segment is fixed. The effective thermal conductivities would increase with the ratio,

0, increasing when the spherical segment diameter is fixed and the ratio is lower
than 0.6. The thermal conductivities would remarkably decrease when the ratio is
larger 0.6.
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Introduction

With the development of micron and nanotechnology, the researches on the thermal
property of nanomaterials have attracted wide attention of researchers [1, 2]. Due to the limita-
tions of nanoexperimental measurement techniques, theoretical predictions, and numerical sim-
ulations have become the primary means of the research for thermal properties of nanomaterials.
When the solid materials are in nanoscale, the phonon ballistic transports play the dominant
role, and the micro and nanoscale effects occur in the internal heat transfer [3-5]. So far the re-
searchers have extensively researched on the nanowires and 1-D or 2-D nanofilms in the fields
of the thermal properties of solid materials. The molecular dynamics and Monte Carlo methods
are mainly used [6, 7].

In the fields of thermal science, the thermal insulation silica nanomaterials have be-
come potential in the fields of aeronautics and astronautics and construction, due to the charac-
teristics of light weight and low thermal conductivity [8, 9]. The nanograins constituting its
solid skeleton are 3-D spherical structures. The solid grain sizes of the thermal insulation
nanomaterial are generally 2-5 nanometer. So the Knudsen numbers are smaller (close to 0.1)
and close to the phonon mean free path. The phonon heat transports are in the quasi ballistic
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transport region, which belong to the acoustic thick condition. The atom numbers are enormous
in the solid grains, so numerous nodes are usually used in numerical calculation, and a large
amount of computation time is needed to calculate the phonon scattering. In this case, the con-
siderably high computational cost will be used by the molecular dynamics method [10]. Both
the lattice Boltzmann method (LBM) and the Monte Carlo method have good computational ac-
curacy for the simulation of phonon heat transport in the quasi ballistic transport region. But the
Monte Carlo method also needs a great deal of computation time, for its calculation accuracy de-
pends on the number of sampling besides the lattice density within the large size and high di-
mension of nanograins [11]. Considering the computational cost and accuracy, the LBM has
more obvious computational advantages [12].

In LBM, complex macroscopic phenomena were replaced by regular microscopic par-
ticle motions. The LBM has the advantages of easy implementation and simple processing of
boundary conditions. In fact, LBM has been widely applied to simulate the phonon heat transfer
in solid material. Amona et al. [10] computed the thermal conductivity for in-plane and out
of-plane directions at different surface scattering factors for the thin silicon film using LBM.
Christensen and Graham [13] introduced a coupled lattice Boltzmann finite difference method
to simulate the phonon heat transfer in a 2-D domain. The simulations of heat transfer in
nanometerials of multidimensional structure were rarely found.

As aforementioned, high computational cost will be spent by numerical simulation
when the scale of nanograin is in the subcontinuum. For facilitating engineering applications, it
is important to obtain the correlation for calculating the thermal conductivities of nanograins.

In this study, the LBM was adopted to obtain numerical results of the heat transfer for
3-D nanograins of silica aerogel. The multiple linear regression analysis was utilized to get the
fitted formulas calculating thermal conductivity of nanograins. The fitted formula showed the
effects of geometrical sizes and temperature of nanograins on the thermal conductivities.

Physical and mathematical models
Physical model

The 3-D spherical segment model was established to demonstrate nanograins of silica
aerogel, as shown in fig. 1. In the figure, d, is the diameter of spherical segment, 4 — the diameter
of surface gap, and L — the length of axis. To facilitate the analysis, the dimensionless scale was
taken as 0 = 4/d. Given the boundary conditions: the constant temperature boundary was on the
surface gap, and the left side was high temperature 7, =301 K; the right side was low temperature
T, =300 K; the spherical surface was adiabatic, and it is diffuse scattering boundary.

Adiabatic The LBM

' Boltzmann transport equation (BTE)
was a general fundamental equation for treating

- QA/ energy transport problems:
Gap éurface % + va +a 5_f = 8_f (1)
ot ’ ov ot ),

where fis the distribution function of particle, ¢
— the time, and a — the acceleration.

Figure 1. Geometry and boundary condition of Th? collision ‘Ferm in th? rig.ht. of eq. (1)
spherical segment structure was non-linear function. For simplicity, the re-
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laxation time approximation was introduced. The BTE with relaxation time approximation was
given:

a eq _—

of +wWf = fU-7 2)

t T
where 7 was the phonon relaxation time.
The BTE under the relaxation time approximation can be transformed to an equation

on the phonon energy density formulation, and the lattice Boltzmann equation of each lattice
point could be derived as [10]:

e(r+Art+At)y=(1-B)e(r,t)+ ;e (r,t) 3

where e/(r, t) is the energy density distribution of discrete phonon, e®d(r, f) — the energy density
distribution of discrete equilibrium phonon, and 3; — the weight function.

The energy density distribution of discrete equilibrium phonon in lattice could be cal-
culated by the formula:

e (r,t) =% ilel- (r,1) @)
iz

where m is the total number of velocity direction in the lattice.
According to the lattice vibration energy and the calculations of states density and
Debye frequency [11], the phonon energy density could be obtained:

Lok, T4 T

TD3 0 ex—l

dx ©)

where 7 is the number density of the wave vector, x — the dimensionless frequency (= hw/k,T),
o — the frequency of phonons, 72— the Planck constant divided by 2, &, [JK!] — the Boltzmann
constant (=1.38-10723), and T — the temperature.

The heat flux in nanograins could be express:

q= ioe (r,1) 6)

Based on the temperature and heat flux, the effective thermal conductivity could be
solved through:
_ LfqdS

 AT|[dS 7

eff

where ¢ is the steady heat flux through the media cross-section area dS at y =0 boundary, and AT
— the temperature difference of the left and right boundaries.

For the nanograins with 3-D structure, its numerical simulations were performed by
the D3Q15 velocity model of LBM. The discretized velocity for D3Q15 model which was
shown in fig. 2 was expressed:

(0,0,0)v i=0
¢, =1 (*L1L0)v, (0,£10)y, 00,£1)y  i=1-6 (8)
(£L+L+1)y i=7-14
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The phonon energy transfer between lattices
was restricted by the relation between the lattice
distance Ar and time step At:

Ar = c;At )

Fitted by multiple linear regression analysis

The axis length of nanograin was defined as
the characteristic scale. By investigating the re-
sults of numerical simulation, fig. 2, we could
discover that nanograin thermal conductivities
were affected by the length of axis and the ratio,

10 A 0, of diameter of gap to spherical segment. Be-
sides, similar as literature [ 14], the basic form of
Figure 2. The D3Q15 model fitted formula was structured:
k
bulk — x + y% + z(Kn)? (10)

eff
where, x, y, z, and 6 were the unknowns, and assumed,

Y_ — kbulk (1 1)
keff
X, -2 (12)
Substituting eqs. (11), (12) for eq. (10), we have:
Y =x+ yX, + z(Kn)? (13)

Considering the expression form of thermal conductivity for nanoscale thin film pro-
posed by Majumdar [14], the value of @ should be in the field U(1, ). So the value of 8 was re-
spectively assumed to be 1.4, 1.3, 1.2, ..., 0.6, and let:

X, = (Kn)? (14)
Then eq. (13) is changed to:
Y =x+yX, +2X, (15)

In multiple linear regression analysis, the y was fitted by n group values of (x,;, x,;, Xs;,
........ , X,,) (i=1,2, ......., n) which were the observed value of the x,, x,, X3, ..ccccue, X,
The form of linear expression is assumed to be:

y=b +byx; +byx,+....... +b,01% (16)

where b, b,,...... , b,..; were the regression coefficients. According to the least squares, the
value of following eq. (17) should be the smallest.

@ = i[yi = (b +byx; +byxy+. b, x,)]? (17)
i-1

So the regression coefficients should satisfy the following equation set:
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b, b))
(CCT) by |=C|y, (18)
_bm+l_ _yn_
where
11 1 1]
X X X3 Xin
C=|xy xpn xp Xon (19)
_xml me xm3 xmn_

The regression coefficients in eq. (18) could be solved by using the Cholesky separa-
tion method. When the length of nanograins axis was between 1 to 9 nm, and the diameter ratio
of gap to spherical segment is 0.2 to 0.9, 30 sets of results of numerical simulation were taken.
The values of x, y, and z in fitted eq. (15) were corresponding to the regression coefficients of
equation set (18).

y|=|b (20)

[N}
S
o3

The numerical results were substituted in set of eq. (18), and then the regression coeffi-
cients of eq. (20) were got. These values were returned to fitted eq. (15), and compared with the
numerical results without fitted computation. In the end, fitted computing results were better
when the value of @ equaled to 0.8 by taken its different values close to 1. The x, y, and z were 1,
3, and 0.8 respectively.

Expression of thermal conductivity for spherical segment grains was obtain:

k eff _ 1 (2 1 )

Fou +3% 1 08(Kn)®s

where Kn is the Knudson number and it is defined as the ration of phonon mean free path and
characteristic length of the system.

The phonon mean free path was used in the previous fitted formula, so it could be ap-
plied to computing the thermal conductivity of different materials with spherical segment struc-
ture. For silicon dioxide nanograins, the phonon mean free path was equal to 0.6 nm.

By observing the relationship between thermal conductivity and temperature of
nanograins, fig. 3, the same law to bulk materials was revealed. In the range of temperature be-
tween 294 K to 700 K, and its value was taken every 50 K. Then final fitted formula of thermal
conductivity for nanograins was got by the binomial fitting method. The eq. (22) showed the re-
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! ' ' ' lationship of thermal conductivity, diameter of
17-0 @B O e©® e| spherical segment gap, Knudsen number, and
=4 Q@"@p temperature of nanograins.
o g 1 keff = 1 kO +
A 08 22)
e ® [14] | 1+3Z+0.8(Kn)~ (
E 9 LEM +106-1073(T —T,) +619048 -10-7(T — T,)?
0.4 1 where & is thermal conductivity of bulk material
. . : .| when 300 K and T, —the value equals to 300 K.
8 1000 000 =000 A0 Equations (21) and (22) could be applied to

d[nm . . .
] non-metallic solid materials.

Figure 3. Comparison of normal thermal
conductivity in Si films at 300 K Program validation

In this paper, the normal phonon heat trans-
ports were numerically simulated in silicon film and the results were compared with the [14].
For silicon, the group velocity, mean free path and phonon relaxation time were 6400 m/s, 41 nm,
and 6.53 ps, respectively.

The title name of y axis is film thickness and the vertical axis is the ratio of the film ef-
fective thermal conductivity to the bulk, and the title name of x axis is the thickness of silicon
filmin fig. 3. As can be seen from the diagram, the normal thermal conductivity would decrease
with the decrease of the film thickness. The results from the developed LBM is reasonably
matched with those of Majumdar [14], which are derived by using the Matthiessen rule for dif-
fuse boundary scattering under the gray approximation.

Results and discussion

Results of numerical simulation

The phonon heat transfer was simulated in 3-D nanograins by LBM. For silica, the

group velocity, mean free path and phonon relaxation time were 4100 m/s, 0.6 nm and 0.1463
ps, respectively.

Figure 4 shows the thermal conductivity

s & variation with the diameter of the spherical

‘ il segment nanograin at the differentd, and the &
e are 0.2, 0.4, 0.6, and 0.8, respectively. The

£ 06T ok e * nanograin thermal conductivities increased
=3 ol e " " with the diameter increasing at all § in fig. 4.
< o4} v _ y " b This was because the phonon transports were
p - . 5:014 in the (.11ffu510n—ba111st1c regions within the

o2t " e simulation scale. The regions would present

. Gown boundary scattering effect. That was the

phonon boundary scattering effect was en-

SoL T hanced and the additional thermal resistance

Dim was generated in the smaller size nanograins.
Thus, the effective thermal conductivities be-
Figure 4. Effective thermal conductivities ’ . .
changing with the nanograin diameters at come lower when the diameters of nanograin
different & decrease.
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In addition, the effective thermal conductivities increased with the ¢ increasing at
same diameters of spherical segment in fig. 4. And the increasing intensities of the thermal con-
ductivity become smaller and smaller with & increasing. This was because that 6 increasing
causes the gap area of spherical segment increasing and axial size decreasing. Furthermore, the
changings make the thermal conductivities increase. But the changing intensities will become
weaker at lager 6. That was due to the effects of gap area of the spherical segment increase
weaker than diameter decrease.

Results of fitted formula

Figure 5 indicates comparison of thermal
conductivity results of numerical simulation
and fitted eq. (21) when the temperature of
nanograins was 300 K and the value of re-
spectively was 0.3 and 0.7. We could find that
thermal conductivities of nanograins would in-
crease when the diameter and axis of spherical
segment increased. The results of fitted for-
mula were in better agreement with numerical 02k
simulation.

Figure 6 shows the effective thermal con-
ductivities of the nanograin at different tem- 0.0, B p 5 8 10
peratures calculated from the fitted eq. (22), Hinm
and its comparison with the numerical simula-  Figure 5. Fitted result of effective thermal
tion results. As could be seen, the same varia-  conductivities of SiO, nanograin at 300 K
tion trend of the thermal conductivity for
nanograin to bulk material with temperature

— Fitted

® Numerical

was ?evealed. The results Qf fitted forrn}lla are 16k R
astlllsli);n better agreement with the numerical re- :‘& N + Numerical
& Tk
Conclusion % .
The thermal conductivity of 3-D |
nanograins was fitted for numerical simula- 1ol
tion results of LBM by multiple linear regres-
sion analysis in the work. The thermal conduc- osl
tivity of nanograins would rise with the s 506 =0 %00 =
increasing of diameter and axis of spherical TK

segment. The effective thermal conductivities Figure 6. Fitted result of effective thermal

also increases with the diameter ratio, 5, of gap  conductivity of SiO, nanograin at different

to spherical segment increasing when diame-  temperatures

ter of spherical segment was fixed. But the in-

creasing degree would become lightly when the ratio was larger than 0.6. The results of fitted
formula agree well with the numerical results. The variation of thermal conductivity of
nanograins with temperature had the same law as the bulk materials. The variation of thermal
conductivity of fitted results with temperature and scales from the fitted formula was consistent
with the numerical results.
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Nomenclature
A — the force per unit mass T, — the right side temperature of
a — acceleration the model, [K]
d — the diameter of spherical segment, [m] AT — the temperature difference of the left and
ds — the infinitesimal area vertical to direction right boundaries, [K]
of heat-flow, [m?] At — the time step, [s]
efr, t) — the energy density distribution of discrete v — velocity
phonon X, — the value of vector
f — the distribution function of particle X — the dimensionless frequency,
Kn — the Knudson number ) =ho/ kT
ko — the thermal conductivity of bulk material Greek bol.
when (7= 300 K) [Wm 'K '] reer symools
kpux ~ — the thermal COIldUCt%Vit?’ of n — the number density of the wave vector
bulk material [Wm K] 0 — the parameter to be obtained
ky — the Boltzr{lzz;nn cor}lstant and T — the phonon relaxation time, [s]
(=1.38:10°), [JK "] 10} — the frequency of phonons, [Hz]
L — the axis length of spherical segment, [nm] ’
m — the total number of direction lattice point ~ Subscripts
q — the steady heat flux, [Wm K] eff  — the effective value
r — radius gf spberlcal segment, [m] c _ collision of particle
Ar — the lattice distance, [nm] eq — equilibrium of the discrete phonon direction
S — surface of particle velocity
Ty — the value equals to 300 K i — direction of particle velocity bul
T, — the left side temperature of the model, [K]
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