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In this study, cutting tools average temperature was investigated by using thermal 
imaging camera of FLIR E50-type. The cubic boron nitride inserts with zero and 
negative rake angles were taken as cutting tools and round bar of EN 90MnCrV8 
hardened steel was used as the workpiece. Since the life of the cutting tool ma-
terial strongly depends upon cutting temperature, it is important to predict heat 
generation in the tool with intelligent techniques. This paper proposes a method 
for the identification of cutting parameters using neural network. The model for 
determining the cutting temperature of hard steel, was trained and tested by using 
the experimental data. The test results showed that the proposed neural network 
model can be used successfully for machinability data selection. The effect on the 
cutting temperature of machining parameters and their interactions in machining 
were analyzed in detail and presented in this study.
Key words: cutting temperature, turning, hard steel, neural network

Introduction

In the hard machining process, cutting temperature is often of great concern due to 
its impact on the product performance. Cutting temperature in the metal cutting process is a 
very important factor affecting production optimization [1]. Therefore, for a desired part per-
formance, it is important to predict and control the development of this cutting temperature as 
a function of the hard machining parameters. The importance of temperature prediction for the 
machining processes has been well recognized in the machining research community, firstly, 
due to its effects on tool wear and its constraints on the productivity, and secondly, due to a 
significant impact it has on the integrity of workpiece surface such as residual stress, hardness, 
and surface roughness [2]. 

An important advantage in meeting this new challenge is being able to quickly acquire 
information on specific machining operations [3, 4]. Cutting temperature is the commonest in-
dex for determining tool wear [5]. Ay and Yang [6] monitored time wise change in the tempera-
ture of the work piece by using infrared thermovision to determine the effect of heat transfer on 
the tool. They concluded that if the tool’s temperature is increased that leads to the acceleration 
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of the wearing process. The high cost of specific cutting tools and the cost of downtime for 
tool changing must be minimized [7]. Tool wear plays a key role in the economy of machining 
operations. Jawahir et al. [8] maintain that knowing the optimum machining parameters is vital.

Various researchers involved with the modeling of cutting temperature have at their 
disposal a number of options. For a variety of reasons, one particular option has been largely 
investigated in the literature, the use of artificial neural networks (ANN) [9, 10]. This method 
of artificial intelligence, is claimed by Zuperl et al. [11] and Ambrogio et al. [12] to have many 
attractive properties for modeling complex production systems. Petković et al. [13] developed 
an ANN model which can be used successfully for the accurate prediction of cutting tempera-
ture while performing the turning of the biomedical stainless steel. These include universal op-
timization algorithm to ensure simple, fast and efficient optimization of all important machining 
parameters, accommodation of multiple non-linear variables with unknown interactions, and 
good generalization capability. 

Over the past few years, the growth of automated industries has prompted the use of 
artificial intelligence techniques, such as the neural networks (NN) [14]. The ANN are among 
the most powerful computer modelling techniques, based on statistical approach, currently be-
ing used in many fields of engineering for modelling complex relationships which are difficult 
to describe with physical models [15]. The ANN have been extensively applied in modelling 
many metal cutting operations such as turning, milling, and drilling [9, 10, 16]. The ANN mod-
els proved to be very effective in analyzing the effects of cutting conditions and predicting the 
output characteristics of the process.

Hard turning has been receiving increased attention because it offers many possible 
benefits over grinding in machining hardened steel [17]. The cubic boron nitride inserts are 
commonly used in hard turning, because of the high cost of cubic boron nitride (CBN) inserts. 
It is minimized cutting temperature which directly influences the tool wear. In turning process, 
cutting temperature depends on the options and the suitability of different cutting speeds, feeds, 
cutting depth and it also affects the durability of the cutting tool [18]. Due to these aspects, mea-
suring procedures are necessary as they permit one to establish the real state of tool wear and 
to manufacture parts with higher accuracy [19]. The thermographic technique has commonly 
been used to measure the temperature of the cutting tool. Muller-Hummel et a1. [20] measured 
the temperature distribution on the rake face of the diamond coated tool in turning using a ther-
mographic technique. This technique is used for researching the correlations between cutting 
parameters and temperature distribution in the zone of cutting.

However, this study was inspired by a very limited or no work on the application of 
ANN in modelling the relationship between cutting conditions and the cutting temperature 
during machining of hardened steel, EN 90MnCrV8, alloy. Hardened steel is usually machined 
by grinding process and here is used the turning process which is a more effective machining 
process with a satisfied quality. Cutting temperature is an important issue in the machining 
processes and it is influenced by the process parameters such as tool geometry (i. e. nose radius, 
edge geometry, rake angle, tool tip radius, chamfer thickness, etc.), cutting conditions (cutting 
speed, feed, depth of cut, etc.) and workpiece properties. Contribution of this paper is seen in 
the fact that not only modeling is done by NN, but the comparison of two CBN inserts with dif-
ferent tool geometry, a negative rake angle and zero angle, is shown. Comparative observation 
showed that zero angle gives slightly smaller deviation in the cutting temperature values than 
the negative rake angle. 

The present work is focused on the modeling of cutting temperature in turning using 
NN methods. In this work, an experimental investigation was carried out using a lathe for the 
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turning of hard steel. The important input turning parameters chosen were cutting speed, feed 
rate and the depth of cut. The response considered was cutting temperature. An ANN was 
developed for the prediction of cutting temperature values in hardened steel after the turning 
machining process. Obtained model gave a significant relationship between cutting tempera-
ture and cutting parameters in order for the improvement of cutting tools work efficiency. 

Experimental set-up

The main aim of the experiments was to de-
termine cutting temperature in the turning of cold 
working hardened steel. This steel was heat treated 
and hardness of 55 HRC was obtained in the ma-
chining zone of every workpiece. Machining was 
performed without cooling and lubrication agents. 
Turning operations were realized with five different 
cutting speeds, v, feed, f, and the depth of cut, a, 
using CBN tool, tab. 1.

The workpiece material was EN 90MnCrV8 cold working tool steel with the following 
chemical composition: 0.90%C, 0.20%Si, 2.00%Mn, 0.40%Cr, and 0.10%V. Turning test was 
performed in longitudinal turning on the round bar with 34 mm diameters and 500 mm length 
using conventional lathe with 10 kW spindle power. There are three types of rake angles: pos-
itive, negative, and zero. During the turning test, for zero and negative tool rake angle, cutting 
temperatures were recorded. A FLIR E50 thermal imaging camera was used to measure the cut-
ting temperatures. Thermal camera was positioned and fixed on a tool holder. The camera moved 
with the tool and monitored the same area on it. The emission factor of 0.95 for steel was adopted 
as the highest temperature on the chip was measured. The thermal camera measured maximal 
temperature, minimal temperature, and average temperature in the selected area. The tempera-
ture in the pointed spot on the tool was also measured and this temperature was used in calcu-
lations by ANN modeling. The temperature was monitored during the machining of one whole 
section on the workpiece and the value obtained after 5 seconds was used for the calculation.

Two types of CBN inserts were used in these tests: CNMA120404 and CCMW120404 
(tabs. 1 and 2). Through the use of tool holders, a negative rake angle y = –6° was obtained for 
the tool holder PCLNR2525M12 and zero angle y = 0° was obtained for the tool holder SCL-
CR2525M12, respectively. In planning and conducting the experiment, three factorial central 
compositional experimental plans were used. Selected factors of experiment have changed in 
five levels of value, authors 
used in [3, 4]. This meth-
od allows investigating the 
wider interval of parameters 
and the predicted model is 
more reliable, tab. 3.

Artificial neural network modelling

The ANN method is becoming useful as the alternative approach to conventional tech-
niques, or as the component of integrated systems. It is an attempt to predict, within a special-
ized software, the multiple layers of a number of elementary units called neurons [14]. The 
MATLAB software, NN toolbox function, was used to create, train, validate, and predict the 
different ANN reported in this research.

Table 1. Turning conditions
vc [m min–1] f [mm  rev–1] a [mm]

80 0.045 0.07
90 0.05 0.1
120 0.1 0.22
160 0.2 0.5
180 0.25 0.7

Table 2. Specifications of tool insert
Inserts γ [°] α [°] λ [°] κ [°] κ1 [°] r [mm]

CNMA120404 -6 6 -6 91 5 0.4

CCMW120404 0 7 -6 91 5 0.4



Tarić, M. R., et al.: Monitoring and Neural Network Modeling of Cutting Temperature ... 
2608	 THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2605-2614

In this work, one of the most popular feed-forward networks was selected. This net-
work is a multi-layer architecture proving to be an excellent universal approximation of non-lin-
ear functions. The feed-forward NN was trained by TRAINLM algorithms. The TRAINLM is 
a network training function that updates weight and bias values to Levenberg-Marquardt opti-
mization. 

Table 3. Experimental plan and modeled data

No vc
[mmin–1]

f
[mmrev–1]

a
[mm]

θ
[°C]

θ NN
[°C]

θ
[°C]

θ NN
[°C]

Negative rake angle Zero rake angle
Training data

1 90 0.05 0.1 100 98.268 104 103.978

2 160 0.05 0.1 105 106.999 119 119.465

3 120 0.25 0.22 108 97.086 130 126.467

4 160 0.2 0.1 135 137.895 169 169.471

5 90 0.05 0.5 154 152.445 108 108.084

6 180 0.1 0.22 128 129.756 102 112.383

7 90 0.2 0.5 167 165.357 143 141.468

8 160 0.2 0.5 201 200.762 138 132.748

9 80 0.1 0.22 169 172.443 145 139.992

10 120 0.1 0.22 155 154.911 130 124.194

11 120 0.1 0.22 141 154.387 131 123.291

12 120 0.1 0.22 140 153.866 120 122.269

13 80 0.1 0.22 165 164.194 105 105.272

14 180 0.1 0.22 170 170.367 137 137.357

15 120 0.045 0.22 130 129.393 113 112.281

16 120 0.1 0.7 160 164.494 115 105.966

17 120 0.1 0.07 96 97.008 130 129.212

18 120 0.1 0.7 180 184.262 155 154.125

Average error of training data [%]: 1.32 2.34

Test data

19 160 0.05 0.5 118 117.628 187 186.333

20 120 0.1 0.22 121 124.966 153 155.436

21 120 0.25 0.22 139 138.503 151 150.959

Average error of test data[%]: 2.24 1.98

Validation data

22 90 0.2 0.1 120 129.967 121 121.163

23 120 0.045 0.22 156 151.060 145 139.411

24 120 0.1 0.07 164 183.557 165 157.024

Average error of validation data [%]: 5.48 1.74
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Learning is a process by which the free parameters of the NN are adapted through a 
continuous process of simulation by the environment in which the network is embedded [21]. 
The learning function can be applied to individual weights and biases within the network. 
The LEARNGDM learning algorithms in feed-forward networks are used to adapt networks. 
Gradient descent method (GDM) was used to minimize the mean squared error between the 
network output and the actual error rate. It trains the network with gradient descent with the 
momentum back-propagation method. The back-propagation learning in feed-forward net-
works belongs to the real of supervised learning, in which the pairs of input and output values 
are fed into the network for many cycles, so that the network learns the relationship between 
the input and the output.

For this study, feed-forward network was selected since this architecture interactive-
ly creates one neuron at a time. This is an optimization procedure based on the gradient de-
scent rule which adjusts the weights of the network to reduce the system error is hierarchical. 
The network always consists of at least three layers 
of neurons: the input, output, and middle hidden lay-
er neurons. The input layer has inputs, which are: v 
[m min–1] the cutting speed, f [mm rev–1] – the feed, 
and a [mm] – the depth of cut. The outputs are the 
values of cutting temperatures for both inserts, fig. 1. 
Three parameters were set to optimize the network 
performance: the number of hidden layers is 12, the 
number of iterations is 100 and the number of neurons 
in the hidden layer is 20. 

In this study, a part of the experimental data was used for training and the remaining 
data was used for testing the network. Each input has an associated weight that determines its 
intensity. The network can be trained to perform certain tasks where the data is fed into the 
network through an input layer. 

This is processed through one or more intermediate hidden layers and finally it is fed 
out to the network through an output layer as shown in fig. 2. It must be highlighted that the 
best network architecture is reached by trial and error after considering different combinations 
of the number of neurons in the hidden layer, the number of hidden layers, spread parameter, 
and learning rate, depending on the type of NN being used.

Results and discussion

The regression plot of the ANN for zero angle for predicted cutting temperature is 
shown in fig. 3. The regression plots display the network outputs with respect to targets for 
training, validation, and test sets. From this plot, the value of the regression coefficient is found 
to be more than 97.7% which strongly justifies the acceptability in the prediction capability of 
the models. In case of the dry ANN model, the regression coefficient has a higher value. Hence, 
it can be concluded that this model is accurate. 

Three different sets of data patterns were prepared for NN model development; the 
first set was comprised of 18 patterns for training, the second set was comprised of 3 patterns 
(15% of total patterns) for validation and the third set was comprised of 3 patterns (15% of total 
patterns) for the testing of network, fig. 3 and tab. 3. The parameters used in this testing and 
validation data were different from the data collected for the experiment. 

Table 3 shows the compared values obtained by the experiment and the NN model. 
The average deviations of the ANN model for training parameters are 2.34% for zero rake angle 

Figure 1. Network input and output 
layer

Cutting speed

Feed

Depth of cut

Neural
network

Cutting
temperature

Inputs Output
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and 1.32% for negative rake angle. The results obtained by the feed-forward network, using 
TRAINLM algorithms for training and LEARNGDM algorithms for learning, show agreement 
with the experimental data. This shows that the selected parameters to optimize the network 
performance were a good choice. The average deviations of the testing data for cutting tem-
perature are 1.74% for zero angle and 5.48% for negative rake angle. Research showed that NN 
model gives accurate, precise prediction on cutting temperature, fig. 2.

Figure 2. Error diagrams adopted for model test and validation

Test data for negative rake angle Validate data for negative rake angle

Test data for zero rake angle Validate data for zero rake angle

NN data
Exp. data

NN data
Exp. data

NN data
Exp. data

NN data
Exp. data

Figure 3. Linear regressions for actual and ANN predicted temperature 
for negative rake angle
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Figure 4 shows the response surface graph of the analyzed variables in terms of the 
parameters selected from the turning process. These types of graphics allow us to know the way 
in which the temperature is at the same time influenced by two parameters. 

Looking at the graphs, we can see that the highest temperature values for both rake 
angles were obtained for the depth of cut and feed values. For the maximum temperatures, if 
the response surface graph was observed, then cutting speed was the only variable that had a 
significant effect on the cutting temperature.

Figure 4. Response surface graph for cutting temperature  
(for color image see journal web site)
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The main effects plots represent the data means of each input variable level. Another 
type of graph that allows us to know about the behavior of different turning parameters is the 
main effects of plot. This plot depicts the way in which one of the input variables affects the 
temperature results. The influence of each input variable on the temperature values is shown in 
fig. 5. The tool temperature increases with the increase of cutting speed, feed and depth of cut 
for the negative rake angle. The influence of these machining parameters of the negative rake 
angle is higher than the influence of the same parameters of the zero angle.

Cutting speed for both rake angles has a similar effect on the cutting temperature, 
although somewhat higher temperature is obviously obtained when using the negative rake 
angle. Cutting speed for both rake angles has a similar effect on the cutting temperature, al-
though somewhat higher temperature is obviously obtained when using the negative rake angle. 
Therefore, as expected, the higher the cutting parameters values, the higher the temperatures 
obtained.

Rake angle is a parameter used in various cutting and machining processes, describing 
the angle of the cutting face relative to the work. An insert with a zero rake angle reduces cut-
ting temperature by allowing the chips to flow more freely across the rake surface. 

With increases feed and depth of cut at negative rake angles, it is clear that the cutting 
temperature increase. This is due to the fact that the volume of work material coming in contact 
with the tool or the volume of material being removed also increases with the increase in feed 
rate. It can also be observed from fig. 5 that the cutting temperature continuously increase with 
feed, the increase is more prominent at negative rake angles while less at zero rake angles. This 
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is because the plunging effect of the tool into the workpiece material at a negative rake angle 
overshadows the effect of increase in cutting temperature with increase in feed at negative rake 
angles.

Rake angle have a great effect on the cutting temperature. Increasing and decreasing or 
keeping the rake angle negative and zero the cutting temperature thereby increases and decreas-
es, respectively. When the negative rake angle is used, the shear strain is more, but for practical 
range, the negative rake angle has higher cutting temperature than zero rake angles, fig. 6.

The temperature distribution along the cutting edge at the tool-work contact area 
is shown in fig. 7. Temperatures on the rake face are measured by thermographic camera 

Figure 5. Effects of machining parameters on cutting temperature
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FLIR E50. In the figure, the temperature distribution is almost constant, but the temperatures 
at the negative rake angle are slightly higher. It is well known that the wear of the flank land is 
accelerated at points A and B. The temperature is much lower outside the contact area.

Figure 7. Values of cutting temperature for 160 m/min, 0.2 mm/rev,  
and 0.5 mm; (a) negative rake angle and (b) zero angle   
(for color image see journal web site)

Conclusion

In this paper a NN system for the selection of the turning parameters has been intro-
duced. The ANN model was developed based on the turning of cold work hard steel EN 90Mn-
CrV8. Observations indicate that the ANN modeling results of turning were in good agreement 
with the experimental findings, demonstrating that approximately 95% of the predictions were 
achieved. Experimental results showed that, in machining without cooling and lubrication of 
hard steel EN 90MnCrV8 the cutting temperature increased with the increase in feed and depth 
of cut for the negative rake angle. The cutting speed has an influence on the cutting temperature 
for both angles. Negative rake angle have a higher effect than zero rake angle on the cutting 
temperature. The cutting temperature increase with decrease in rake angle from 0° to –6°. The 
comparison and validation of ANN results with the experiment findings verified the high accu-
racy of the models. The NN modeling technique could be an economical and successful method 
for the prediction of turning output parameters according to the input variables.

Nomenclature
a	 –	depth of cut, [mm]
f	 –	feed, [mm rev–1]
r	 –	nose radius, [mm]
vc	 –	cutting speed, [m min–1]

Greek symbols

α	 –	back angle, [°]
γ	 –	rake angle, [°]
θ	 –	cutting temperature [°C]
κ, κ1	 –	tool cutting edge angles, [°]
λ	 –	cutting edge inclination angle, [°]
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