
Gao, F.,: General Fractional Calculus in Non-Singular Power-Law Kernel Applied ... 
THERMAL SCIENCE: Year 2017, Vol. 21, Suppl. 1, pp. S11-S18 S11

GENERAL  FRACTIONAL  CALCULUS  IN  NON-SINGULAR   
POWER-LAW  KERNEL  APPLIED  TO  MODEL  ANOMALOUS  
DIFFUSION  PHENOMENA  IN  HEAT TRANSFER  PROBLEMS

by

Feng GAOa,b*

a State Key Laboratory for Geomechanics and Deep Underground Engineering,  
China University of Mining and Technology, Xuzhou, China 

b School of Mechanics and Civil Engineering, China University of Mining and Technology,  
Xuzhou, China

Original scientific paper 
https://doi.org/10.2298/TSCI170310194G

In this paper we address the general fractional calculus of Liouville-Weyl and Liou-
ville-Caputo general fractional derivative types with non-singular power-law kernel 
for the first time. The Fourier transforms and the anomalous diffusions are discussed 
in detail. The formulations are adopted to describe complex phenomena of the heat 
transfer problems.
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Introduction 

As one of important branches of fractional derivatives (FD) [1-5], the general frac-
tional derivatives (GFD) have played an important role in being applied in mathematics and 
physics, see [6-10] and the cited references therein. For instance, the general evolution equa-
tion involving the general fractional calculus (GFC) was discussed in [11]. The general time 
fractional diffusion equation was reported in [12]. The rheological problems involving the GFD 
within the non-singular power-law [13] and Mittag-Leffler-function [14] kernels were proposed, 
respectively. The GFD within the extended Mittag-Leffler type functions were also reported in 
[15]. The GFD with a constant from the normalized process were proposed in [16, 17]. 

However, the GFC of the Liouville-Weyl and Liouville-Caputo type with the non-sin-
gular power-law kernel have not yet reported anywhere. With a strong motivation of the ideas 
aforementioned, the brief objective of the present paper is to suggest general Liouville-Weyl 
and Liouville-Caputo GFD in the non-singular power-law kernel and to model the anomalous 
diffusion phenomena in the heat transfer problems. 

The Liouville-Weyl GFC in non-singular power-law kernel

In this section, we first consider the Liouville-Weyl fractional calculus in singular 
power-law kernel. With the use of them, the GFC in the non-singular power-law kernel is pro-
posed.
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The Liouville-Weyl and Liouville-Caputo FD  
within singular power-law kernel

Let  and  be sets of real numbers and positive integral numbers, respectively, and 
let [ ],C a bΩ∈ , where ,a b∈ℜ. 

The left-side Liouville-Weyl FD of the function ( )tΩ  of order α  is defined by [6, 18, 19]:
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where t−∞ <  and 0 1α< < .
The right-side Liouville-Weyl FD of the function ( )tΩ  of order α  is defined as [6, 18, 19]:
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where t < ∞ and 0 1α< < .
The left-side Liouville-Weyl FD of the function ( )tΩ  of order α  is defined as [6, 18, 19]:
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where t−∞ < , 1n nα− < <  and n∈.
The right-side Liouville-Weyl FD of the function ( )tΩ  of order α  is defined by [6, 18, 19]:
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where t < ∞, 1n nα− < <  and n∈.
The left-side Liouville-Weyl fractional integral of the function ( )tΩ  of order α  is de-

fined as [6, 18, 19]:
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where t−∞ <  and 0 α< . 
The left-side Liouville-Weyl fractional integral of the function ( )tΩ  of order α  is de-

fined as [6, 18, 19]:
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where t < ∞ and 0 α< .
The left-side Liouville-Caputo FD of the function ( )tΩ  of order α  is defined by [6, 18, 19]:
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where t−∞ <  and 0 1α< < .
The right-side Liouville-Caputo FD of the function ( )tΩ  of order α  is defined as [6, 

18, 19]:
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where t < ∞  and 0 1α< < . 
The left-side Liouville-Caputo FD of the function ( )tΩ  of order α  is defined as [6, 18, 19]:
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where t−∞ < , 1n nα− < <  and n∈.
The right-side Liouville-Caputo FD of the function ( )tΩ  of order α  is defined by [6, 

18, 19]:
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where t < ∞ , 1n nα− < <  and n∈.

The Riemann-Liouville and Liouville-Caputo  
GFD within non-singular power-law kernel 

The Riemann-Liouville GFD of the function ( )tΩ  of order α  is defined by [13]: 
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where 0η >  and 0 1α< < . 
The Riemann-Liouville GFD of the function ( )tΩ  of order α  is defined by [13]: 
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where 0 t< , 1n nα− < <  and n∈.
The Riemann-Liouville fractional integral (GFI) of the function ( )tΩ  of order α  is 

defined as [13]:
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where t < ∞  and 0 α< . 
The Liouville-Caputo GFD of the function ( )tΩ  of order α  is defined by [13]: 
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where 0η >  and 0 1α< < . 
The Liouville-Caputo GFD of the function ( )tΩ  of order α  is defined by [13]: 
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where 0 t< , 1n nα− < <  and n∈.

The Liouville-Weyl and Liouville-Caputo  
GFD within non-singular power-law kernel 

As the results of the generalizations of the Riemann-Liouville and Liouville-Capu-
to GFD within non-singular power-law kernel, we now consider the definitions of the Liou-
ville-Weyl and Liouville-Caputo GFD in the real line.

The left-side Liouville-Weyl GFD of the function ( )tΩ  of order α  is defined by:
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where t−∞ <  and 0 1α< < .
The right-side Liouville-Weyl GFD of the function ( )tΩ  of order α  is defined: 
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where t < ∞  and 0 1α< < . 
The left-side Liouville-Weyl GFD of the function ( )tΩ  of order α  is defined:
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where t−∞ < , 1n nα− < < , and n∈.
The right-side Liouville-Weyl GFD of the function ( )tΩ  of order α  is defined by: 
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where t < ∞ , 1n nα− < < , and n∈.
The left-side Liouville-Weyl GFI of the function ( )tΩ  of order α  is defined:
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where t−∞ <  and 0 α< . 
The left-side Liouville-Weyl GFI of the function ( )tΩ  of order α  is defined:
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where t < ∞ and 0 α< .
The left-side Liouville-Caputo GFD of the function ( )tΩ  of order α  is defined by:
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where t−∞ <  and 0 1α< < .
The right-side Liouville-Caputo GFD of the function ( )tΩ  of order α  is defined: 

 ( ) ( ) ( ) ( ) ( )LCT d1= d
1 dt

t

t t αα η
η η

α η

∞

∞

Ω Ω −  Γ + ∫  (23)

where t < ∞  and 0 1α< < . 
The left-side Liouville-Caputo GFD of the function ( )tΩ  of order α  is defined:
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where t−∞ < , 1n nα− < < , and n∈.
The right-side Liouville-Caputo GFD of the function ( )tΩ  of order α  is defined by: 
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where t < ∞, 1n nα− < < , and n∈.
The Fourier transform of the function is defined:
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where , tω ∈ℜ . 
In tab. 1, the expression ( )i αω  is defined by [6, 19]:
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2
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where sgn( )ω  is the sign function [20].
The Fourier transforms (FT) of the Liouville-Weyl 

GFD, GFI, and Liouville-Caputo GFD are listed in tab. 1. 

Table 1. The FT of the Liouville-Weyl 
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Modelling anomalous diffusion phenomena involving  
GFD within non-singular power-law kernel

We now consider the general Liouville-Weyl time fractional anomalous diffusion 
(subdiffusion) within non-singular power-law kernel:
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where κ  is the diffusion coefficient, x  is the space, and t  is the time, and: 
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Let us consider the general Liouville-Caputo time fractional anomalous diffusion 
(subdiffusion) within non-singular power-law kernel:
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where κ  is the diffusion coefficient, x  – the space, and t  – the time, and: 
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The general Liouville-Weyl fractional-space anomalous diffusion (superdiffusion) 
within non-singular power-law kernel:
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is presented, where κ  is the diffusion coefficient, x  – the space, and t  – the time, and: 
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The general Liouville-Caputo fractional-space anomalous diffusion (superdiffusion) 
within non-singular power-law kernel:
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is considered, where κ  is the diffusion coefficient, x  – the space, and t  – the time, and: 
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Similarly, the general Liouville-Caputo time fractional anomalous diffusion (superdif-
fusion) within non-singular power-law kernel:
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is considered, where κ  is the diffusion coefficient, x  – the space, and t  – the time.
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Conclusion

In the present work, we proposed the Riemann-Liouville and Liouville-Caputo GFD 
within non-singular power-law kernel in the real line for the first time. The anomalous diffu-
sions were discussed with the use of the proposed general fractional-order differential oper-
ators. The general fractional-order differential subdiffusion and super diffusion equations in-
volving Liouville-Caputo GFD within non-singular power-law kernel were also presented. The 
proposed formulations are presented as a new prospective for describing the anomalous heat 
transfer problems.
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Nomenclature

x – space co-ordinate, [m]
t – time co-ordinate, [s]

Greek symbols
α – fractional order, [–]
κ – diffusion coefficient, [m2s–1]
Ω(ω) – Fourier transform of Ω(t), [–]
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