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The transient flow of a viscous incompressible electrically conducting micro- 
-stretch fluid over an infinite vertical porous plate in the presence of slanted hy-
dromagnetic flow with an aligned angle of 0° to 90° and thermal radiation effects
has been analyzed. The governing equations are solved analytically by using the
technique of the state-space approach and the inversion of the Laplace trans-
forms is carried out using a numerical approach for varies physical parameters
on the velocity, microrotation, micro-stretch and temperature profiles are shown
graphically. In order to verify the accuracy of the present results, we have com-
pared these results with the numerical solution by using the Crank-Nicolson im-
plicit finite difference method. It is found that the thickness of thermal boundary-
-layer increases with an increase in the value of thermal radiation whereas an-
tithesis trend is seen with increasing the Prandtl number.

Key words: slanted MHD, natural convection, microstretch fluid, 
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Introduction 

The philosophy of micro-stretch fluids contains micropolar and moreover stretch 

was initiated by Eringen [1] as a subclass of the more common description of fluids known as 

simple micro-fluids, further known as Eringen fluids [2]. The micro-stretch fluid have a local 

substructure, whose material particles or micro elements have seven degrees of freedom, three 

of translation, three of rotation, and one of stretch or axial motion, consisting of expansions 

and contractions, at the same time the micropolar fluids whose particles are rigid, possess on-

ly six degrees of freedom, three of translation and three of rotation. In addition, micro-stretch 

fluids similar to micropolar fluids can support couple stresses and possess micro-inertia. We 

observed that the exclusive theory declared ahead can besides be applied, in the limiting ac-

tion, to cover the classical Navier-Stokes fluid as well. There are plenty of articles on micro- 

-stretch fluid model available [3-5], but most of them describe the natural convection flows of

the micro-stretch fluid. Ezzat and El-Sapa [6] examined the free convection boundary-layer

flow of a perfect conducting MHD micropolar fluid with stretch for the 1-D problem. For

some MHD relevant work of interest we refer to [7-9]. By applying state space method and an
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inversion Laplace transform, Helmy et al. [10] examined the 1-D hydromagnetic free convec-

tion flow of a micropolar fluid through a porous medium, past an illimitable vertical plate 

with uniform heating.  

Then again, radiation impacts can be very huge in space technology applications and at 

higher operating temperatures. Heat transfer by concurrent radiation and convection has applica-

tions in various innovation issues including burning, furnace design, the configuration of high 

temperature gas cooled in nuclear reactors, nuclear reactor safety, fluidized bed heat exchanger, 

fire spreads, solar fans, solar collectors, natural convection in cavities, turbid water bodies, photo 

chemical reactors and numerous others. Pal and Chatterjee [11] has examined the heat transfer of 

a micropolar fluid saturated porous medium past an impermeable stretching sheet with magnetic 

field and thermal radiation effects utilizing the Darcy-Brinkman-Forchheirmer model. Ibrahim 

et al. [12] considered an impact of chemical reaction and radiation ingestion on the unsteady 

MHD free convection flow past a semi-infinite vertical permeable moving plate with heat source 

and suction. Radiation effect on a micropolar fluid through a permeable medium with or without 

magnetic field has been considered by various researchers [13-18]. 

The objective of the present work is to examine the effect of thermal radiation and 

slanted magnetic field on the boundary-layer flow of a micropolar fluid with stretch past a verti-

cal porous plate. We analyze the problem through the method of state-space formulation, which 

is more general than the classical Laplace transform and Fourier transform techniques. The state -

space hypothesis is pertinent to all frameworks that can be scrutinized by integral transforms in 

time and is effectively utilized to examine, in specifically, problems in modern control theory. 

The state-space formulation in micro-polar fluid problem was introduced by Ezzat et al. [19]. In 

this aspect, the governing equations are create in matrix form utilizing a state vector that com-

prises the Laplace transforms in time of the temperature, velocity, micro-rotation, micro-stretch, 

temperature and their gradients. Their integration subjected to zero initial condition is done by 

the method of matrix exponential technique. Influence functions in the Laplace transform do-

main are clearly formed. The resulting formulation is connected to a thermal shock problem with 

in the presence of a slanted magnetic field and thermal radiation. The inversion of the Laplace 

transform is carried out to utilize a numerical technique [20]. In addition, the Crank-Nicolson 

technique for stability and convergence finite difference scheme was also performed in the pre-

sent work. A fine solution is obtained between both systematic and numerical techniques.  

Mathematical formulation 

Consider a transient, laminar, 1-D natural 

convection flow of an incompressible, Micro- 

-stretch fluid through an infinite vertical porous 

plate. Aligned magnetic field of potency B0 is at-

tached along with y direction, with an intense an-

gle ω. At ω = 90° this magnetic field performance 

similar to transverse magnetic field (since sin  

90° = 1). It is further assumed that the induced 

magnetic field is negligible in comparison to the 

applied magnetic field. Let x-axis be along the sur-

face, y-axis being normal to it. The physical model 

is delineated in fig. 1. The velocity components of 

the liquid are q = (u, 0, 0) and the microrotation 

 

Figure 1. Physical configuration and  

co-ordinate system 
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vector acting along z-axis Ω = (0, 0, Ω). The scalar micro-inertia and all fluid properties are 

assumed constant except that the influence of the density variation with temperature is con-

sidered only in the body force term. The effect of the density variations in other terms of 

equations, are considered negligible. This is the well-known Boussinesq approximation. The 

system of equations which govern the transient natural convection stream of a micro-stretch 

conducting liquid, through a porous medium, past an impulsively infinite plate, when the ve-

locity, microrotation, micro-stretch and temperature are functions of y and time t, are: 
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where, u and v are the velocity components in the x- and y-directions, respectively, βT – the 

coefficients of thermal expansion, N – the microrotation, Ω – the micro-stretch, T – the liquid 

temperature, α – the porosity, λ – the thermal conductivity, Cp – the specific heat at constant 

pressure, and μ, χ, γ, and j – the characteristic constants of the micropolar liquid, where  

n1 = χ/ρ, n = (μ + χ)/ρ is the evident kinematic viscosity. The a0, λ0, and η0 are micro-stretch 

viscosity moduli, τ1 – micro-rotation heat conduction moduli. 

The Rosseland diffusion approximation for radiation [7] heat flux is given by: 
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where σ is the Stefan-Boltzmann constant, and k – the mean absorption coefficient. Further, 

we assume that the temperature difference within flow is such that T4 may be expanded in a 

Taylor series. Hence expanding T4 about T∞ and dismissing higher order terms we get 
4 3 44 3 .T T T T    

Hence: 
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By utilizing eqs. (5) and (6), we get: 
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(7)  

Proceeding with the analysis, we state the non-dimensional quantities: 
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(8)  

where K0 and M1 are the permeability and magnetic parameter, respectively, G and F – the 

non-dimensional and radiation parameter, respectively, Pr – the Prandtl number, Gr – the 

Grashof number for heat transfer, subscripts w and ∞ refer to the quantities on the wall and 

far from the wall, respectively. If view of 0v  invoking the previously non-dimensional 

quantities, eqs. (2)-(4) and (7) are reduced to the non-dimensional equations, dropping the as-

terisks for convenience: 
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These equations will be supplemented with appropriate boundary condition relevant 

to the particular application under consideration, as will be seen. Taking the Laplace-

transform, defined by the relation: 
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Acting on both sides of eqs. (9)-(12) with considered the zero initial conditions, we 

obtain: 
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State space formulation 

We choose as state variable in the physical domain the quantities: 
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where the over bar means the Laplace transform, and the prime indicates differentiation with 

respect to y. Equations (14)-(17) can be written as: 
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The formal solution of system of eq. (18) can be written in the structure: 

 ( , ) exp[A( ) ] (0, )V y s s y V s  (19)  

The characteristic equation of the matrix A(s) has the form: 
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The characteristic roots of eq. (20) are 1 2 3 4, , ,   k k k k  given by: 
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Applying the Cayley-Hamilton theorem, we get: 
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Equation (22) demonstrates that A8 and all higher powers of A can be expressed in 

terms of A7, A6, A5, A4, A3, A2, A, and I, the unit matrix of order 8. The matrix exponential 

can be written in the structure:  
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By solving the system of linear eq. (24), we can determine 0 7a a . Substituting for 

the coefficients 0 7a a  into eqs. (23) and computing 
2 3 4 5 6, , , ,A A A A A  and

7 ,A  one can ac-

quire the entries ; , 1,...8ijl i j  of the matrix ( , )l y s  in the most straightforward conceivable 
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structure. It is currently possible to solve a board class of problems in the Laplace transform 

domain. 

The thermal shock problem 

Consider the effects of thermal radiation MHD natural convection flow of a micro- 

-stretch conducting liquid in a porous medium occupying a semi-infinite region 0y of the 

space bounded by an infinite vertical plate 0.y   Choosing the y-axis perpendicular to the 

surface of the plate, with the boundary conditions are: 
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Finally, substituting the previous value into eq. (19), we acquire the solution of the 

problem in the transformed domain as: 
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The Shearing stress, w ,  at the wall is given by: 

 w

0 0

( )

y y

u u
N v

y y
    

 

 
    

 
 (31) 

considering that (0, ) 0.N t  The skin-friction coefficient Cf is given: 

 w

2

2
1

2

f

u
C

y
U






  


 

(32)

 

Inversion of the Laplace transform 

To invert the Laplace transform in previous equations, we may utilize a numerical 

procedure based on the Fourier expansion of a function [20]. In this method, the inverse ( )h t  

of the Laplace transform is approximated by the relation ( ):h s  

 1

d
π/

1 11

e 1 π
( ) ( ) Re e

2

t
ikt t

N

k

ik
h t h d h d

t t





    
     

     


 

(33)

 

where d is a constant and N  is a sufficiently large integer chosen such that: 
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 1π/d

1

π
e Re e

iNt tt iN
h d

t


  
   

   
 (34) 

where   is a preselected small positive number that corresponds to the degree of accuracy to 

be achieved. Equation (33) is the numerical inversion formula valid for 12 0.t t   In particu-

lar, we choose 1t t , to get:
 

 
d

1 11

e 1 π
( ) ( ) Re ( 1)

2

t N
k

N

k

ik
h t h d h d

t t

    
      

     


 

(35)

 

Numerical procedure 

The transient non-linear ordinary differential eqs. (9)-(12) subject to the initial and 

boundary conditions are solved numerically by Crank-Nicolson implicit finite different tech-

nique. The computational domain (0 ) (0 1)    t y  is separated into a mesh of lines 

parallel to t- and y-axes. The finite difference approximation of (9)-(12) are acquired by sub-

stituting the approximations of derivatives. Thus, the governing equations and boundary con-

ditions are changed into the following algebraic equations: 
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

 (39) 

and the associated initial and boundary conditions may be expressed: 

1 1 1 10, 0, 0, 0i i i iu N       

 01 1 1 10, 0, 0, ( )
j j j ju N H t       (40) 
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where y  and t  are the mesh sizes along y and time directions, respectively. The computa-

tional domain (0 ) t  is divided into intervals with step size 0.002 t  for time (t). Here 

the subscript i designates the grid points with x-co-ordinate and j  designates the value at a 

time  t n t , where 1,2,3,...n etc. The accuracy and validation of the numerical procedure 

have been compared with the analytical results. It is seen from fig. 2 that the numerical results 

are in good agreement with analytical solutions. 

Stability and convergence analysis 

The stability criterion of the finite difference scheme for constant mesh sizes are ex-

amined using Von-Neumann technique as explained by Carnahan et al. [21]. The general 

terms of Fourier expansion for , , ,  and u N   are of the form: 

 e , e , e , ej j IKi j j IKi j j IKi j j IKi
i a i a i a i au uG N NG G G      

 
(41)

 

where , , ,u N  and K are constants and 2 1.I    The superscripts ,i j are the grid points 

y  and t, respectively. The finite difference eqs. (36)-(39) can be simplified by substituting eq. 

(41) and canceling the term ej IKi
aG in both sides. Thus the governing equations are: 
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The system of eq. (42) can be written in matrix form: 
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 (43) 
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where 
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The Eigen values of the previous matrix are: 

2

4 2 1 2 1 1 2
1 3 2

4 1 2 1 2 1 1 2

1 1 sin
, 4 ,

1 2 1 1 (1 )

C E F E F E E G tI k
F

C E C E C E E C y
 

 
                  

 

 

2

3 2 1 2 1 1 2
2 4 2

3 1 2 1 2 1 1 2

1 1 sin
, 4

1 2 1 1 (1 )

C E F E F E E G tI k
F

C E C E C E E C y
 

 
                  

 (44) 

The constant 1C  can be represented:  

2

1 2
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1 2
2( )

k
t

M t
C

y

 
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 
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and the real part of 1C  is greater than or equal to zero. Similarly, the real part of 2 3, ,C C   

and 4C  are greater than or equal to zero. Therefore, 1, 1,2,3,4,n n    and the scheme is un-

conditionally stable. The local truncation error O(Δt2 + Δy2) is and it tends to zero as t  and 

y  tend to zero. Hence, the scheme is compatible. Stability and compatibility ensures con-

vergence. 

Results and discussion 

Slanted hydromagnetic boundary-layer flow with heat transfer and natural convec-

tion flow of a micropolar fluid with stretch past a porous plate subjected to prescribed heat 

flux embedded in a porous medium in the presence of thermal radiation and a slanted magnet-

ic field is examined in this work. Governing boundary-layer equations are solved analytically 

by using the state-space approach. The technique is applied to the 1-D thermal shock problem 

for the half-space. The solutions are obtained for different values of physical parameters 

which arise in the study and are illustrated graphically in figs. 2 to 11 to analyze their effects 

over the velocity, microrotation, micro-stretch, and temperature. The computational work of 

the problem is carried out using MATLAB and the computations were performed for the con-

stants of the problem namely 

1 0 1

2 3 4

2, 45 , 1, 1.5, 8, 2, 1.3, 1.3,

0.001, 0.5, 0.5, 3, Gr 2

M F K R G R R

R R R t

        

    
 

We have obtained a comprehensive range of solutions to the transformed conserva-

tion equations. In order to check the accuracy of the present results, the present analytical so-

lution has been validated the numerical results of Crank Nicolson method, which is shown in 

fig. 2. It is clearly seen from figure that the results are in good agreement. As the precision of 

the numerical solutions is great, the analytical and numerical solutions are very close to each 
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other in the velocity profile. Figure 2 demonstrates that the stream velocity is found to accel-

erate with natural convection parameter Gr from 2.0 to 6.0.  

The simultaneously effects of magnetic parameter and aligned angle on the velocity 

profile are appeared in fig. 3. It is noticed that an augmentation in the aligned angle of mag-

netic field and the magnetic parameter decelerates the velocity profile. Here ω = 0° symboliz-

es to the case where there is no impact of magnetic field in the stream area and ω = 90° sym-

bolizes to the case where the magnetic field acts transversely on the stream area. The rising 

values of aligned angle (0°-90°) lead to enhance the magnetic field strength in the stream area. 

Because of upgrade of magnetic field strength, a resistive type force called Lorentz force con-

nected with the aligned magnetic field makes the boundary-layer more slender furthermore 

the magnetic field lines of force move past the porous plat at the free stream velocity. The 

thickness of velocity boundary-layer gets to be more slender as the magnetic field strength 

expands which is clear because of stream gets stifled by the magnetic field. 

 

Figure 2. Comparative study of velocity profiles  
for different Gr  

 

Figure 3. Velocity distribution for different 
values of M1 and ω 

The flow of liquids over the boundaries has numerous applications, for example, 

boundary-layers control. The investigation of transient boundary-layers owes its significance 

to the fact that all boundary-layers that occur in real life are, in a sense, unsteady. Lately, the 

requirements of modern technology have stimulated interest in liquid-flow studies, which in-

volve the intersection of few phenomena. One such study is related to the impacts of natural 

convection flow through a porous medium, which play a vital part in agriculture, engineering, 

petroleum industries, and heat transfer. 

Figure 4 demonstrates the impact of the permeability of the porous medium K on the 

velocity dispersion. As appeared, the velocity increases with an increase in dimensionless po-

rous medium parameter. This is because of the way that increasing values of K diminishes the 

drag force which helps the liquid extensively to move quickly. Figure 5 illustrates that the ve-

locity profile for different values of the thermal radiation parameter F in the boundary-layer. 

Clearly, an increase in the thermal radiation F results an enhancement in the external velocity, 

thermal radiation is dispersed more quickly to the surrounding hence increasing the velocity 

boundary layer and also the thickness of momentum boundary-layers. 

The influence of the magnetic parameter M1 and aligned angle   on the microrota-

tion profile with fixed values of other parameters is depicted in fig. 6. It can be seen that the 

effect of increasing the values of magnetic parameter and aligned angle are to decrease the 
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microrotation profile near the plate (0 1) Y . This is due to the fact that the transverse mag-

netic field gives rise to a resistive-type of force, called Lorentz force. This force has the ten-

dency to slow down the motion of the fluid which results in reducing the micro-rotation pro-

files. 

 

Figure 4. Velocity distribution for different  
values of K 

 

Figure 5. Velocity distribution for different 
values of F 

 

Figure 6. Microrotation distribution for  

different values of M1 and ω 

 

Figure 7. Microrotation distribution for different 

values of Gr 

The micro-rotation profile for various values of Grashof number are portrayed in fig. 

7. It is observed that an increase in Grashof number leads to increase in the values of microro-

tation. Here Grashof number represents that the effects of natural convection currents. Physi-

cally, Gr 0  represent that the cooling fluid is heated in the boundary surface, whereas 
Gr 0  means that the hot fluid is cooled in the boundary surface. In addition Gr 0  denotes 

to the absence of natural convection currents. Also, the curves demonstrates that the peak val-

ue of velocity increases quickly close to the wall of the porous plate as Grashof number in-

creases, and afterward decomposes to the free stream micro-rotation. Figure 8 portrays the ef-

fect of the Prandtl number on the micro-stretch profiles of the stream field for two values of 

time, to be specific, 3t  and t = 7, and keeping different parameters of the stream field con-

stant. The Prandtl number is found to improve the micro-stretch of the stream field at all 

points while the time is found to decelerate the micro-stretch field. The effect of coupled pa-
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rameter 4R  over the dimensionless micro-stretch is demonstrated in fig. 9. Increase in coupled 

parameter 4R  is accompanied with decrease in micro-stretch distribution and micro-stretch 

boundary-layer thickness become thinner. 

 

Figure 8. Micro-stretch distribution for different 
values of Pr and t 

 

Figure 9. Micro-stretch distribution for different 
values of R4

 

The temperature profile for some reasonable values of Pr = 0.72, 2.0, 5.0, 7.0, which 

are essential as in the physically compare to air, gas, R-12 refrigerant and water are exposed 

in fig. 10. In fig. 10, we observe that the temperature reduces with mounting values of Prandtl 

number. It is likewise observed that the thermal boundary-layer thickness is most extreme 

close to the plate and decreases with increasing distances from the leading edge lastly ways to 

deal with zero. Besides, it is seen that the thermal boundary-layer for air which related to 
Pr 0.72  is more prominent than those for air, gas, R-12 refrigerant, and water. It is defended 

because of the way that thermal conductivity of fluid declines with increasing Prandtl number 

and henceforth diminishes the thermal boundary-layer thickness and the temperature profiles. 

The temperature profile for different values of thermal radiation parameter F is plotted in fig. 

11. This figure demonstrates that the effect of thermal radiation is to improve heat transfer 

due to the way that thermal boundary-layer thickness increments with enhance in the thermal 

radiation. Above these lines, it is noted that, the radiation must be reduced to get the cooling 

process at a maximum rate. 

 

Figure 10. Temperature distribution for different 
values of Pr 

 

Figure 11. Temperature distribution for different 
values of F 
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Conclusions 

The influence of thermal radiation on slanted MHD heat transfer flow of a micro- 

-stretch fluid past an infinite vertical porous plate is studied systematically and numerically. 

In this work, the idea of state-space methodology is briefly acquainted and employed to derive 

solutions of non-linear equations [22]. The acquired results from state-space approach are 

compared with from numerical method (Crank-Nicolson implicit finite different technique) to 

confirm the uniqueness of the proposed method. The outcomes uncover that the state-space 

approach can accomplish appropriate results in anticipating the solutions of such problems.  

The velocity of momentum boundary-layer thickness declines with the increasing 

values of aligned angle of magnetic field, ,  and magnetic parameter, M1. The microrotation 

profile also diminishes with increasing values of aforementioned parameters. The aligned an-

gle of the magnetic field plays an essential part in controlling the magnetic field strength and 

the effect of Lorentz force on the micro-stretch fluid flow region. The effect of Grashof num-

ber is to enhance the non-dimensional velocity and temperature for its increasing values indi-

vidually. 

The effect of permeability parameter, ,K  is to increase the velocity as well as to in-

crease the momentum boundary-layer thickness. Variable permeability has more tendencies to 

control the fluid velocity than uniform permeability. An increase in the thermal radiation pa-

rameter, ,F  is to increase the thickness of the velocity, temperature as well as thermal bound-

ary-layer thickness. The micro-stretch profile decreases with an increase in the values of cou-

pled parameter R4. An increase in the Prandtl number is to increase the micro-stretch for both 

lower and higher values of time parameter .t  
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Nomenclature 

B0 – magnetic induction, [kg2m–2s–1] 
Cf – skin-friction coefficient 
j  – micro-inertia density 
L – enclosure length, [m] 
Tw – temperature of the heated surface, [K] 
T∞ – temperature of the ambient fluid, [K] 
t – time 
u, v – velocity components in the x- and y-directions, [ms–1] 
U – characteristic velocity, [ms–1] 

Greek symbols  

γ  – spin-gradient viscosity 
θ – dimensionless temperature 
μ  – fluid viscosity, [kgm–1s–1] 
μe – magnetic permeability of the fluid 
ρ – density of the fluid, [kgm–3] 
σ  – electric conductivity, [kgs–2] 
χ  – vortex viscosity 
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