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An analysis is performed for entropy generation in a steady laminar boundary-lay-
er flow of an electrically conducting second grade fluid in a porous medium pre-
scribed wall heat flux subject to a transverse uniform magnetic field past a semi-in-
finite stretching sheet, The effects of viscous dissipation, internal heat generation 
of absorption due to deformation are considered in the energy equation. Kummer’s 
functions are used to obtain temperature field. The velocity, temperature are used 
to compute the entropy generation number with a change in various dimensionless 
parameters.
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Introduction

The design of thermal systems can be achieved by optimization of entropy generated 
in the systems. Due to the number of applications in the industrial manufacturing process, the 
problem of the boundary-layer flow past a stretching plate has attracted considerable attention 
of researchers during the past few decades for examples heat exchangers, cooling of nuclear 
reactors, MHD power generators, geophysical fluid dynamics, energy storage systems, cooling 
of electronic devices, etc. A series of studies on heat transfer effects on viscoelastic fluid have 
been made by many authors under different physical situations, including [1-8] have derived 
similarity solution of viscoelastic boundary-layer flow and heat transfer over an exponential 
stretching surface. Cortell [9] have studied flow and heat transfer of a viscoelastic fluid over 
stretching surface considering both constant sheet temperature and prescribed sheet tempera-
ture. Abel et al. [10] carried out a study of viscoelastic boundary-layer flow and heat transfer 
over a stretching surface in the presence of non-uniform heat source and viscous dissipation 
considering prescribed surface temperature and prescribed surface heat flux. Liu [11] analysis 
the flow and the heat transfer of a steady laminar boundary-layer flow of an electrically con-
ducting fluid of second grade in a porous medium subject to a transverse uniform magnetic 
field past a semi-infinite stretching sheet with power-law surface temperature or power-law 
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surface heat flux. Khan [12] studied the case of the boundary-layer problem on heat transfer in 
a viscoelastic boundary-layer fluid flow over a non-isothermal porous sheet, taking into account 
the effect a continuous suction/blowing of the fluid, through the porous boundary. The effects 
of a transverse magnetic field and electric field on momentum and heat transfer characteristics 
in a viscoelastic fluid over a stretching sheet taking into account viscous dissipation and ohmic 
dissipation are presented by Abel et al. [13]. Hsiao [14] studied the conjugate heat transfer of 
mixed convection in the presence of radiative viscous dissipation in viscoelastic fluid past a 
stretching sheet. The case of unsteady MHD was carried out by Abbas et al.[15]. Using Kum-
mer’s functions, Singh [16] carried out the study of heat source and radiation effects on MHD 
flow of a viscoelastic fluid past a stretching sheet with prescribed power law surface heat flux. 
The effects of non-uniform heat source, viscous dissipation and thermal radiation on the flow 
and heat transfer in a viscoelastic fluid over a stretching surface was considered in Prasad et 
al.[17]. The case of the heat transfer in MHD flow of viscoelastic fluids over stretching sheet 
in the case of variable thermal conductivity and in the presence of non-uniform heat source 
and radiation is reported in Abel and Mahesha [18]. Using the homotopy analysis, Hayat et 
al. [19] looked at the hydrodynamic of 3-D flow of viscoelastic fluid over a stretching surface. 
The investigation of biomagnetic flow of a non-Newtonian viscoelastic fluid over a stretching 
sheet under the influence of an applied magnetic field is done by Misra and Shit [20]. Subhas 
et al. [21] analyzed the momentum and heat transfer characteristics in a hydromagnetic flow 
of viscoelastic liquid over a stretching sheet with non-uniform heat source. Nandeppanavar et 
al. [22] analyzed the flow and heat transfer characteristics in a viscoelastic fluid flow in porous 
medium over a stretching surface with surface prescribed temperature and surface prescribed 
heat flux and including the effects of viscous dissipation. Chen [23] studied the MHD flow and 
heat transfer characteristics viscoelastic fluid past a stretching surface, taking into account the 
effects of Joule and viscous dissipation, internal heat generation/absorption, work done due to 
deformation and thermal radiation. Nandeppanavar et al. [24] considered the heat transfer in 
viscoelastic boundary-layer flow over a stretching sheet with thermal radiation and non-uni-
form heat source/sink in the presence of a magnetic field. Cortell [25] also reported the flow 
and heat transfer of a fluid through a porous medium over a stretching surface with internal heat 
generation. Free convective heat and mass transfer for MHD fluid flow over a permeable verti-
cal stretching sheet in the presence of the radiation and buoyancy effects has been investigated 
by Rashidi et al. [26, 27]. Although the foregoing research works have covered a wide range 
of problems involving the flow and heat transfer of viscoelastic fluid over a stretching surface, 
they have been restricted, from a thermodynamic point of view, to only the first law analysis. 
The contemporary trend in the field of heat transfer and thermal design is the Second law of 
thermodynamics analysis and its related concept of entropy generation minimization. Entropy 
generation is closely associated with thermodynamic irreversibility, which is encountered in all 
heat transfer processes. Different sources are responsible for the generation of entropy such as 
heat transfer and viscous dissipation Bejan [28, 29] The analysis of entropy generation rate in a 
circular duct with the imposed heat flux at the wall and its extension to determine the optimum 
Reynolds number as a function of the Prandtl number and the duty parameter were presented 
by Bejan [30]. Sahin [31] introduced the Second law analysis of a viscous fluid in a circular 
duct with isothermal boundary conditions. In another paper, Sahin [32] presented the effect 
of variable viscosity on the entropy generation rate for heated circular duct. A comparative 
study of entropy generation rate inside the duct of different shapes and the determination of the 
optimum duct shape subjected to the isothermal boundary condition were done by Sahin [33]. 
Narusawa [34] gave an analytical and numerical analysis of the Second law for flow and heat 



Chaich, Z., et al.: Thermodynamic Analysis of Viscoelastic Fluid in a Porous Meduim ... 
THERMAL SCIENCE: Year 2019, Vol. 23, No. 1, pp. 219-231 221

transfer inside a rectangular duct. In a more recent paper, Mahmud and Fraser [35-37] applied 
the Second law analysis to fundamental convective heat transfer problems and to non-Newto-
nian fluid flow through channel made of two parallel plates. The study of entropy generation in 
a falling liquid film along an inclined heated plate was carried out by Saouli and Aiboud-Saouli 
[38]. The effects of magnetic field and viscous dissipation on entropy generation in a falling 
film and channel were studied by Aiboud-Saouli et al. [39, 40]. The application of the Sec-
ond law analysis of thermodynamics to viscoelastic MHD flow over a stretching surface was 
carried out by Aiboud and Saouli [41, 42]. Irreversibility analysis in a couple stress film flow 
along an inclined heated plate with adiabatic free surface has been studied by Adesanya and 
Makinde [43]. Entropy generation and energy conversion rate for the peristaltic flow in a tube 
with magnetic field has also been investigated by Akbar [44]. Makinde [45] has investigated 
entropy analysis of MHD boundary-layer flow and heat transfer over a flat plate with a convec-
tive surface boundary condition. Entropy analysis of an unsteady MHD flow past a stretching 
permeable surface in nanofluid has been studied by Abolbashari et al. [46]. Chemical reaction 
effect on MHD free convective surface over a moving vertical plane through porous medium 
has been studied by Tripathy et al. [47] . 

Formulation of the problem 

In 2-D Cartesian co-ordinate system x, y we consider magneto-convection, steady, 
laminar, electrically conductor, boundary-layer flow of a second grade fluid caused by 
a stretching surface through porous me-
dium to prescribed wall heat flux in the 
presence of a uniform transverse magnetic 
field. As shown in fig. 1 the x-axis is taken 
in the direction of the main flow along the 
plate and the y-axis is normal to the plate 
with velocity components u, v in these di-
rections under the usual boundary-layer 
approximations, the governing equations 
are [11]:

 0u v
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∂ ∂
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The boundary conditions are given:

 0, 0, , 0y B u Bx v= > = =  (3a)

 , 0,  0uy u
y
∂

→∞ → →
∂

 (3b)

The energy equation [11], corresponding to the boundary-layer analysis, with viscous 
dissipation, done by deformation and internal heat generation or absorption is given:
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Figure 1. Physical model for the flow
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The relevant boundary conditions are:

 
2

w  D 0,T xq y
y l

∂  = = = ∂  
 (5a)

   , as   T T y∞→ →∞  (5b)

Analytical solution

A similarity solution exists if we introduce a transformation:

 ( )u Bxf η= ′ ,    ( ) ,Bv f η
ν

= −     ,B yη
ν

=  (6)

where a prime denotes the differentiation with respect to η. Apparently eq. (8) has already sat-
isfied the continuity equation. From eqs. (2) and (10), we have:

 ( )2 2
0(2 )IVf ff f k f f f ff k Mn f′′ ′′′ ′′′ ′ ′− = + − +′ − ′−  (7)

Now let us seek a solution of eq. (7):

 ( ) ( )1 1 e mf
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ηη −= −  (8)
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k
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is the parameter associated with the viscoelasticity of the second grade fluid, permeability of the 
porous medium and the contribution of the magnetic field.

This is satisfied by the following boundary conditions:

   0, 0  at 1 f fη = ′= =  (9a)

   , ' 0, '' 0f fη →∞ → →  (9b)

On substituting eq. (8) into eq. (6) and using boundary conditions eqs. (9a) and (9b) 
the velocity components take the form:

 e  mu Bx η−=  (10a)

 (1 e )mBv
m

ην −−
= −  (10b)

Defining the dimensionless temperature:

 ( )
S

T T
T T

θ η ∞

∞

−
=

−
 (11)

Using eqs. (8), (10a), (10b), and (11) and the boundary conditions eqs. (5a) and (5b) 
can be written:

 2Pr Pr( 2 ) Pr Ec[( ) ''( )]f f f kf f f ffθ θ β θ′ + + − = +′ ′ ′ ′′ ′ ′′ ′′− − ′  (12)
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Introducing the variable:

 e mr ηξ −= −    with   2
Prr
m

=  (13)

Substituting eq. (13) into eq. (12) we find:
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The corresponding boundary conditions become:

 ( ) ( )1'  , 0 0r
rm

θ θ−
− = =  (15)

The eq. (14) can be transformed into the standard confluent hyper geometric equation 
or the Kummer’s equation [48].

The solution satisfies eq. (14) and eq. (15) is given:
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is the Kummer’s function. 
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The solution (16) can be rewritten, in terms of  η  as:
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Second law analysis

According to Wood [49] the local volumetric rate of entropy generation in the pres-
ence of a magnetic field and porous medium is given:

 ( )
2 22 2

220

0 0 0 1 0 G
Bk T T uS u

T x y T y T k T
Vσµ µ    ∂ ∂ ∂  = + + + +    ∂ ∂ ∂      

 (19)

The eq. (19) clearly shows contributions of four sources of entropy generation. The 
first term on the right-hand side of eq. (19) is the entropy generation due to heat transfer; the 
second term is the local entropy generation due to viscous dissipation, whereas the third term 
is the local entropy generation due to the effect of the magnetic field and de fourth term is the 
entropy generation due to the Porous medium. 

It is appropriate to define dimensionless number for entropy generation rate NS. This 
number is defined by dividing the local volumetric entropy generation rate 

0GS  to a characteris-
tic entropy generation rate   GS  [49].

For prescribed boundary condition, the characteristic entropy generation rate is:
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Therefore, the entropy generation number is:
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Using eqs. (10a), (10b), (18), and (19), the entropy generation number is given:
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Results and discussion

The flow and heat transfer of an electrically conducting fluid of second grade in a 
porous medium with prescribed wall heat flux over a stretching sheet subject to a transverse 
magnetic field has been solved analytically using Kummer’s functions after that the velocity 
and temperature have been used to compute the entropy generation. 

In all the figures of dimensionless temperature profiles plotted we notice that tempera-
ture is maximum at the wall where both heat flux and magnetic field are imposed and minimum 
at the free surface whatever the values of the parameters studied so we conclude that trans-
fer happened in surface extensible. In order to validate our study, the results were compared 
with those of previous studies as well as the series solution for several values of parameters. It 
can be seen from tab. 1 that our results agree well with those reported in the literature.

It is clear from figs. 2 and 3 that dimensionless temperature increases slightly with 
an increase of both medium porous and magnetic parameters this can be explained by Lorentz 
force which creates by the influence of the vertical magnetic fields of electrically conducting 
fluid. The decrease of permeability (augmentation of medium porous parameter) increases the 
friction between the molecule fluid this causes an increase of heat in the boundary-layer. 

Figure 4 shows the increase of dimensionless temperature profiles as a function of 
η for different values of the viscoelastic parameter. As it can be noticed, an increase of visco-
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elastic parameter produces a reduction in the wall temperature this implies that the increase 
of viscoelastic parameter increases the flow velocity the contact time fluid-surface decreases 
this will cause reduction of heat transfer surface-fluid. We notice also from the fig. 5 that an 
augmentation of the Prandtl number reduces the dimensionless temperature which implies the 
thermal boundary-layer thickness decreases when the Prandtl number increases it physically 
means that the flow with large Prandtl presents spreading of heat in the fluid.

Figure 6 demonstrates the effect of the heat source/sink parameter. For a fixed value of 
η, the dimensionless temperature θ(η) increases with an increase in heat source/sink. This is due 

Table 1. Comparison with previously published 
data for the values of surface temperature 

Pr M [50] [51] Present study
0.72 0 1.2253 / 1.2367

1 0 1 / 1
10 0 0.2688 / 0.2688
6.7 0 / 0.333303 0.333303

0.5 / 0.339715 0.339715
1 / 0.345377 0.345377
5 / 0.380930 0.380930

Figure 2. Effect of the porous medium 
parameter on the temperature

Figure 3. Effect of the magnetic 
parameter on the temperature
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Figure 4. Effect of the viscoelastic 
parameter on the temperature

Figure 5. Effect of the Prandtl number 
on the temperature
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to the increase of the heat generation inside the boundary-layer leading to higher temperature 
profile. 

The fig. 7 presents a variation of dimensionless temperature with Eckert number, we 
notice that an increase of Eckert number augments the dimensionless temperature in the flow 
region it confirms that the energy is stocked in the fluid region dissipation due to the viscosity 
and elastic deformation.

Figure 6. Effect of the heat source/sink 
parameter on the temperature

Figure 7. Effect of the Eckert number 
on the temperature
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The results of the entropy generation are presented in function of many parameters 
such as the viscoelastic, magnetic, heat source/heat sink parameters and dimensionless group, 
Hartman, Reynolds, Prandtl, Eckert numbers 

All the results depict that the entropy decreases with a decrease of mentioned param-
eters moreover the entropy is higher near the surface where the velocity and magnetic field are 
in their maximum values also where the heat flux is imposed this means that the surface acts a 
strong source of irreversibility.

Figure 8 shows the variation of the entropy with magnetic parameter as we can see for 
fixed value of the entropy increases with an increase in magnetic parameter because the magnetic 
field creates more entropy, the figure also displays that the increase of magnetic parameter the 
entropy increases up to certain distance from the sheet after that point the behavior mentioned is 
reverse. The fig. 9 displays the variation of the entropy with medium porous parameter, the entro-

Figure 8. Effect of the magnetic 
parameter on the entropy generation 
number

Figure 9. Effect of the porous medium 
parameter on the entropy generation 
number
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py production number increases with a diminution of permeability of porous medium, whenever 
the medium is more restrictive the particles of the fluid are more and more messy. 

From figs. 10 and 11 we conclude that an augmentation of viscoelastic and heat 
source/heat sinks parameters has a small effect on the entropy generation.

Figure 10. Effect of the viscoelastic 
parameter on the entropy generation 
number k1

Figure 11. Effect of the heat source/ 
heat sink parameter on the entropy 
generation number
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The fig. 12 depicts that the production of the entropy increases with an increase of 
Eckert number this behavior is attributes to the increase of the viscous dissipation that is a 
source of entropy generation. The variations in the number of entropy production depending on 
η for different values of Prandtl number is shown in fig. 13. For a given thickness, the entropy 
production decreases with the increase of the Prandtl number. This is due to the fact that the 
temperature decreases with increasing Prandtl number.

Figure 12. Effect of the Eckert number 
on the temperature

Figure 13. Effect of the Prandtl number 
on the entropy generation number
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The influence of the Reynolds number on the entropy generation number is plotted 
in fig. 14. For a given η, the entropy generation number increases as Reynolds number. The 
augmentation of the Reynolds number increases the contribution of the entropy generation 
number due to fluid friction. The variation of the entropy generation with different values of 
characteristic length is shown on the fig. 15, for fixed value an augmentation of characteristic 
length decreases the entropy generation this behavior can be interpreted by the energy lost in-
side the fluid flow. 
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The effect of the dimensionless group parameter BrΩ-1on the entropy generation 
number is depicted in fig. 16 for a given η, the entropy generation number is higher for higher 
dimensionless group. This is due to the fact that for higher dimensionless group, the entropy 
generation numbers due to the fluid friction. The effect of the Hartman number on the entropy 
generation number is plotted in fig. 17. For a given η, as the Hartman number increases, the 
entropy generation number increases. The entropy generation number is proportional to the 
Hartman number which proportional to the magnetic field. The presence of the magnetic field 
creates additional entropy.

Figure 14. Effect of the Rel on the 
entropy generation number

Figure 15. Effect of the characteristic 
length on the entropy generation number
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Figure 16. Effect of the dimensionless 
group on the entropy generation 
number

Figure 17. Effect of the Hartmann 
number on the entropy generation 
number
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Conclusions

The velocity and temperature profiles are obtained analytically and used to compute 
the entropy generation number in a viscoelastic fluid over a stretching sheet prescribed wall 
heat flux subject to a transverse magnetic field. The influences of the Prandtl number, the mag-
netic parameter and the heat source/sink parameter on the temperature profiles are presented. As 
far as the entropy generation number is concerned, it is dependent on the magnetic parameter, 
the Prandlt and Reynolds numbers, the dimensionless group, the Hartman number. From the 
results the following conclusions could be drawn:
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 y The temperature increases as the porous medium, the magnetic and heat source sink param-
eters increase, but it decreases as the viscoelastic parameter and Prandtl number increase. 

 y The entropy generation number increases as Hartman number, dimensionless group param-
eter and Reynolds number increase.

 y The entropy generation number is slightly influenced by Prandtl number, magnetic param-
eter.

 y The surface acts as a strong source of irreversibility.

Nomenclature
A – constant, [K]
B – proportional, constant
B0 – uniform magnetic field strength, [Wbm–2 ]
Br – Brinkman number, 2 [ ( )/ ] xu k Tµ= ∆ , [–] 
Cp – specific heat of the fluid, [Jkg–1K–1]
D – constant, [K]
Ec – Eckert number, ( 2 2 / pB l AC= ), [–]
f – dimensionless function, [–]
Ha – Hartman number, [ 1/2

0 ( / )B l σ µ= ], [–]
k – thermal conductivity of the fluid, [Wm–1K–1]
k0 – medium porous parameter, (=  / 1 k Bν )
k1 – viscoelastic parameter, ( 1 /Bα µ= )
l – characteristic length, [m]
M – Kummer’s function
Mn – magnetic parameter, [ 2

0 ( )/( )B Bσ ρ= ]
NS – entropy generation number,
Pr – Prandlt number, ( /pC kµ= ), [–]
Q – rate of internal heat generation  

 or absorption, [Wm–3K–1]
Rel – Reynolds number based on  

 the characteristic length, ( /lu l ν= ), [–]
SG – local volumetric rate of entropy  

 generation, [Wm–3K–1]

T – temperature, [K]
u, v – axial and transverse velocity, [ms–1]
ul – plate velocity based on the  

 characteristic length, [ms–1]
x, y – axial and transverse distance, [m]
X – dimensionless axial distance, (= x/l)

Greek symbols

α  – positive constant
β – heat source/sink parameter, ( / pQ B Cρ= )
θ – dimensionless temperature,  

 [ ( )/( )PT T T T∞ ∞= − − ], [–]
Ω – dimensionless temperature  

 difference, ( /T T∞= ∆ ), [–]
η – dimensionless variable, [–]
μ – dynamic viscosity of the fluid, [kgm–1s–1]
ν – kinematic viscosity of the fluid, [m2s–1]
ρ – density of the fluid, [kgm–3]
σ – electric conductivity, [Ω–1m–1]
ξ – dimensionless variable, ( e mr η−= − ), [–]

Subscript

∞ – far from the sheet
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