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In this study, we investigate the heat transfer characteristics in unsteady bound-
ary-layer flow of Maxwell fluid by using Cattaneo-Christov heat flux model and 
convective boundary conditions. The flow is caused by a sheet which is stretched 
periodically back and forth in its own plane. The physical model that takes into 
account the effects of constant applied magnetic field is transformed into highly 
non-linear PDE under boundary-layer approximations. The solution of dimen-
sionless version of these equations is developed using homotopy analysis method. 
The simulations are presented in the form of temperature and velocity profiles for 
suitable range of physical parameters. The obtained results illustrate that an in-
crease in Deborah number and Hartmann number suppress the velocity profiles. It 
is further observed that Cattaneo-Christov heat flux model predicts the suppression 
of thermal boundary-layer thickness as compared to Fourier law.
Key words: Maxwell fluid, Cattaneo-Christov heat flux model,  

oscillatory stretching sheet, homotopy analysis method

Introduction

The study of convective of heat transfer gained great attention of investigators 
because of its numerous applications in industrial and chemical processes like oil and gas 
processing, annealing of metal and plastic sheets, glass tempering, paper and textile drying 
petrochemical, premium thermal oil, refining industry, etc. The phenomenon of heat transfer 
play key role in several chemical engineering phenomena like cooling of chemical equip-
ment, manufacturing of chemical materials, etc. In view of the practical applications, various 
researchers are engaged to investigate heat transfer phenomenon in various fluids models. 
The analysis of heat transfer in viscous flow caused by stretching surface was conducted 
by Gupta and Gupta [1]. Another important study is due to Lawrence and Rao [2] which is 
concerned with the influence of various parameters on flow of non-Newtonian fluid causes 
by permeable heated stretching surface. They obtained closed form solution of their prob-
lem and claimed that the solution is not unique. Rollins and Vajravelu [3] adopted analytic 
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technique to obtained solution of a problem regarding heat transfer from moving surface 
immersed in non-Newtonian fluid model. Bhattacharyya [4] implemented shooting technique 
to highlight the flow of Newtonian fluid caused by shrinking surface. Sahoo [5] discussed 
the Heimenz flow of third grade fluid over a heated surface. He reported that the velocity at 
wall is suppressed by increasing third grade fluid parameter. Abbas et al. [6] discussed similar 
solution for Maxwell fluid-flow generated by heated stretching surface. The heat transfer in 
peristaltic Newtonian flow has been studied by Ali et al. [7]. Mahantesh et al. [8] examined 
heat absorption/generation effects in laminar flow of Walters-B fluid model influenced by 
permeable surface. Oztop et al. [9] considered three different cases for mixed convection 
flow in differentially heated square cavity. Karimi-Fard et al. [10] performed numerical com-
putations for double-diffusive natural convection flow in a porous square cavity. According 
to them, the boundary and inertia effects have significant role in double-diffusive convection. 
The influence of heat source/sink in flow of micropolar fluid over linearly stretched surface 
was addressed by Abo-Eldahab and El Aziz [11]. Mandal and Mukhopadhyay [12] presented 
numerical computations regarding steady-flow of linear fluid model with heat transfer. Malik 
et al. [13] used Sisko fluid model and convective boundary conditions to predict the heat 
transfer phenomena. Sharma et al. [14] presented numerical solution to study heat transfer 
in non-Newtonian flow caused by exponential stretching surface. Khan et al. [15] used Von 
Karman-Pohlhausen method to solve the integral equations to predict heat transfer phenome-
non in viscous fluid-flow over infinite circular cylinder. Gomaa and Taweel [16] analyzed the 
oscillatory flow of viscous fluid generated by heated vertical flat surface. Further contribution 
on this topic can be found in [16-20].

The literature survey indicates that aforementioned studies made use of simple Fouri-
er law of heat flux [21] which states that heat flux is proportional to temperature gradient. How-
ever, it is observed that this model is applicable to macroscopic systems where time scale of the 
system is higher than average relaxation time. The mathematical modeling based on this law 
shows that heat equation results in parabolic form which shows that the whole system is instant-
ly influenced by the initial disturbance. To the best of our knowledge, Cattaneo [22] was first 
who proposed an extension in the Fourier law by introducing a relaxation time expression and 
derived a single equation for temperature field. One of the important feature of this law is that it 
allows the heat transportation via propagation of finite speed thermal waves. The work of [22] 
was extended by Christov [23] by using Oldroyd upper convective derivative [24]. Pranesh and 
Kiran [25] introduced Maxwell-Cattaneo heat conduction law to discuss the Rayleigh-Benard 
magneto convection in a viscoelastic fluid. Straughan [26] presented the analysis of steady-flow 
of linear fluid model using Cattaneo heat flux modeling presence of thermal relaxation effects. 
Haddad [27] employed this model to study thermal instability in viscous flow through porous 
media. Han et al. [28] used Cattaneo-Christov expression to study the heat transfer effects in 
Maxwell fluid over a stretching plate. Hayat et al. [29] studied the heat transfer analysis in stag-
nation-point flow based on Cattaneo-Christov heat flux. Khan et al. [30] applied a numerical 
scheme based on shooting method to evaluate the influence of heat transfer by using this law 
in flow due to bi-directional stretching surface. Li et al. [31] obtained self-similar solution for 
problem regarding steady-flow of Maxwell fluid and heat transfer by using Cattaneo-Christov 
heat flux model. Mustafa [32] examined the rotating flow of Maxwell fluid caused by moving 
surface with the Cattaneo-Christov heat flux model. More recent studies regarding flow of var-
ious fluids based on this law can be found in refs. [33-36].

Bearing in mind the previous attempts, as well as the industrial and practical impor-
tance of these problems, the main aim of this study is to analyze the unsteady-flow of Maxwell 
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fluid [37-40] due to oscillatory stretching sheet by using Cattaneo-Christov heat flux model 
proposed [23] and convective boundary conditions [41-43]. Analytic expressions for both ve-
locity and temperature profiles are obtained using homotopy analysis method (HAM). This 
study presents MHD flow of non-Newtonian fluid over an oscillatory stretching surface which 
have immense importance in many industrial and chemical engineering processes. Particularly, 
the problem presented here with considered geometry has many industrial applications like hot 
rolling, fibers spinning, manufacturing of rubber sheets. Moreover, the MHD effects are useful 
in MHD power generating systems, telephone system, computers, X-rays and scanning devic-
es, etc. The formulated problem is solved analytically by HAM. A detailed analysis for several 
important parameters is presented.

Flow analysis

Consider 2-D, unsteady-flow of an electri-
cally Maxwell fluid over an oscillatory stretching 
sheet. The fluid occupies the region  y ̄ > 0.  Let us 
assumed that sheet is stretched and oscillate period-
ically along x̅-axis with velocity u = bx̅ sin ωt where 
ω represents the frequency and b  is a constant hav-
ing the dimension [s–1]. We have also considered 
the effects of transverse magnetic field of magni-
tude B0  which is imposed normal to the sheet, see 
fig. 1. Using low Reynolds number assumptions, 
the effects of induced magnetic field are neglected. 
The governing boundary-layer equations for 2-D Maxwell fluid-flow are [39]:
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For the present flow configuration, the initial and boundary conditions are:

 sin , 0,  at 0, 0, 0, asu u bx t v y t u yω ω= = = = > → →∞  (3)

In previous equation and denotes the velocity components along and directions, re-
spectively, is the kinematic viscosity, the density, the electric conductivity, and denotes the 
relaxation parameter.

Heat transfer analysis

In this section, we are going to formulate heat transfer problem. Unlike typical stud-
ies, we derive governing equation of heat transfer using Cattaneo-Christov heat flux model 
[16]. According to this model the heat flux and temperature gradient are related through follow-
ing expression:
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Figure 1. Geometry of problem
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where q represents the heat flux, λ2 – denotes the relaxation time of the heat flux, V – the velocity 
vector, T – the Maxwell fluid temperature, k – the thermal conductivity. Equation (4) reduces to 
well-known Fourier law for λ2 = 0. For incompressible fluid ΔV and therefore eq .(4) becomes:
 

2 k T
t

λ ∂ + + ∇ − ∇ = − ∇ ∂ 

qq V q q V  (5) 

The energy equation for incompressible fluid after neglecting viscous dissipation effects:

 
p

Tc T
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where cp is the specific heat. Elimination of q from eqs. (5) and (6) yields to the following single 
equation for the temperature field [16]:
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where α = k / ρcp is thermal diffusively. Equation (7) is subjected to the convective boundary 
conditions given: 

 ( ) , at 0, 0,f
Tk h T T y t T T as y
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where h denotes the heat transfer coefficient. Moreover, Tf  and T∞ are the convective fluid tem-
peratures below the surface and ambient fluid temperature, respectively.

Dimensionless formulation

Before going to the solution of problem, it is better to reduce the number of indepen-
dent variables in eqs. (2) and (7). We introduce following dimensionless quantities [44]:
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Using eqs. (9) and (10), the continuity equation is identically satisfied, and eqs. (2) 
and (7), are transformed into following forms:
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Similarly, the boundary conditions of problem under consideration become:
 ( ) ( ) ( )10, sin ,    0, 0,     (0, ) 1 0, ,y yf fτ τ τ θ τ γ θ τ= = = − −   ( ), 0, ( , ) 0yf τ θ τ∞ = ∞ =  (13) 

where M = (σB2
0 /ρb)1/2 represents the Hartmann number, β = λ1b denotes Deborah number,  

γ = λ2b – the dimensionless relaxation time of heat flux, S = ω/b – the ratio of oscillation fre-
quency to stretching rate, γ1 = (h/k)(n/b)1/2 represent the Biot number, and Pr = n/α – the Prandtl 
number. Equation (12) represents the energy equation based on Fourier law for γ = 0. For 
steady-flow, eq. (11) reduces:
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 ( )2 2 2 22 M 1 M 0yyy yyy y yy y y yyf f f ff f f f ffβ β − − − − + + =   

Moreover, for β = 0 it reduces to corresponding equation for flow of hydromagnetic 
viscous fluid. The corresponding equation for flow of hydrodynamic viscous fluid can be re-
covered by taking [44].

Homotopy analysis method

The dimensionless PDE (11) and (12) are highly non-linear in nature and therefore 
exact solution is difficult to obtain. Therefore, we implement HAM to compute series solution 
of these PDE subject to boundary conditions (13). This method was originally proposed by Liao 
[45] and then successfully applied by many researchers in various disciplines of science and 
engineering [46-49]. To proceed with the solution, we suggest following initial approximations:
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where Ai (1, 2,...5) represent constants. The zeroth-order deformation problems for give problem:
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The solution of zeroth-order deformation problems at p = 0 and p = 1 is:
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The convergence of HAM depends upon hf and hθ. We assume hf that hθ and are select-
ed so that series solution converges at p = 1. Therefore:
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The general solution is of the form:
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where f *m (y, τ) and θ*
m (y, τ) represents the particular solution. Using eqs. (20) and (21), the con-

stants Ai (i =1,2…,5) are eliminated as:
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Discussion 

The auxiliary parameters involved in the analytic expressions are hf and hθ. The con-
vergence region as well as rate of approximations can be estimated for solutions by these pa-
rameters. The plots of fyy(0, τ) vs. hf

  and θy(0, τ) vs. hθ have been shown in fig. 2 at 6th order of 
approximations to estimate suitable range of these parameter for convergent solutions. It is 
observed that for chosen set of involved parameters the admissible ranges for hf and hθ are:  
–2 ≤ hf  ≤ –0.3, –1 ≤ hθ  ≤ 0, respectively. The plots of residual error for f and for a particular set of 
involved parameters at 6th order of approximation is shown in fig. 3(a) when hf = –0.6. Clearly, 
the maximum error over the whole domain is less than 6 ⋅10–6. Similarly, fig. 3(b) testifies that 
residual error for θ is in acceptable range when hf = –6 and hθ = –0.8.

Now we come to the discussion of graphical results concerning the velocity and tem-
perature distribution for diverse values of various flow parameters like Hartmann number, Deb-
orah number, β, relaxation time of the heat flux γ, Biot number and Prandtl number.

Figure 2. The h-curves for (a) velocity, (b) temperature profiles
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Figure 4(a) explains the effects of Deborah number on the transverse velocity com-
ponent f ′ by keeping S = 0.2, M = 0.5, and τ = π/2. This figure shows that velocity decreases 
by increasing Deborah number. For viscous fluid β = 0 the momentum boundary-layer is 
thicker as compared to non-Newtonian fluid. From physical and experimental point of view 
it is seen that at lower values of Deborah number, the fluid behaves much like liquid whereas 
the fluid shows viscoelastic solid like behavior at high Deborah number due to an increase in 
viscous properties and thus the fluid velocity starts to decelerate which is noted in fig. 4(a). 
Moreover, the thickness of the boundary-layer is suppressed for higher values of Deborah 
number.

The transverse distributions of the flow velocity f ′ for specific values Hartmann num-
ber is shown in fig. 4(b). Application of strong magnetic force tends to resist the velocity of 
fluid particles near the surface. This is in fact due to the fact that the presence of magnetic force 
produces the Lorentz force which resists the flow produced by oscillating sheet.

The velocity f ′ as function of time at a specific location y = 0.25 is plotted for differ-
ent values of Deborah number and Hartmann number in fig. 5. A decrease in amplitude of flow 
velocity is noted with an increase in the Deborah number, fig. 5(a). In fact for larger Deborah 
number, the viscous forces are dominant which restrict the motion of fluids particles and as a re-
sult amplitude is decreased. Figure 5(b) is sketched to examine the behavior of Hartmann num-
ber on f ′. Here, it is observed that the amplitude of the velocity, f ′, decreases with increasing 

Figure 3. Residual error for (a) velocity, (b) temperature profiles

Figure 4. The velocity profile for different values of (a) β, (b) M 
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the values of Hartmann number. Again, this suppression in the amplitude is due to the resistive 
force produced due to application of magnetic field normal to the sheet.

The dependence of the fluid temperature on the Prandtl number and γ is sketched in 
fig. 6. Increasing the Prandtl number results in the thickening of thermal boundary-layer. It can 
be justified because thermal diffusivity decreases for large values of Prandtl number which 
results in decrease of temperature and corresponding thermal boundary-layer thickness. How-
ever, for non-zero values of γ the thermal boundary-layer thickness decreases more rapidly with 
increasing Prandtl number. 

In fig. 7, we give the variation of temperature field θ for various values of γ and for 
two different values of Prandtl number. It is interesting to note that the temperature and thermal 
boundary-layer thickness decreases with increasing γ. Further, it is observed that this decrease 
is faster for larger values of Prandtl number. In figs. 8 and 9, the effects of Deborah number and 
Hartmann number on temperature field are shown, respectively. Both the parameters effect the 
temperature field in a similar manner i. e. the temperature field increases by increasing of either 
Deborah and Hartman numbers.

The variation of temperature profile for four different values of thermal Biot number,  
γ1 = 1, 1.5, 2.5, 3.5 are displayed in fig. 10. Thermal Biot number is associated with heat trans-
fer coefficient, h, therefore its higher values represent the case of enhanced heat transfer from 
stretching sheet to the fluid stream. This enhancement in heat transfer is responsible for increase 
in the temperature of fluid. Figure 11 reflects the influence of ratio of oscillation frequency to 
stretching rate, S, on temperature profile, θ. One can easily observe that temperature field θ is 
decreased by increasing S. 

Figure 5. Variation of velocity with time (a) effects of β, (b) effects of M
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In tab. 1, the obtained solution is validated against existing results of Zheng et al. [19] and 
Ali et al. [20]. An excellent agreement between both solutions is observed.

Concluding remarks

The heat transfer analysis in unsteady-flow of Maxwell fluid by using Cattaneo-Christov 
heat flux model is presented when plate is stretched periodically. After computing the solution 
by HAM, a comprehensive analysis has been presented to highlight the effects of various flow 
parameters. The main findings of the analysis can be summarized as following.

 y By increasing Deborah number the fluid velocity is suppressed in the vicinity of the surface 
in given domain. The same is true with increasing Hartmann number.

Figure 7. Effects of γ on θ

Figure 8. Effects of β on θ                                            Figure 9. Effects of M on θ
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 y A oscillations in flow velocity at a specific location are suppressed for larger values of Deb-
orah number and Hartmann number. 

 y It is noted that the heat transfer rate from sheet to the fluid become slow for larger values of 
Prandtl number and relaxation time of heat flux.

 y The Cattaneo-Christov heat flux model predicts lower values of temperature inside the ther-
mal boundary-layer as compared heat flux model based on Fourier law.

 y The rate of heat transfer enhanced by increasing Biot number. Moreover, there is no heat 
transfer when γ1 = 1.
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