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An efficient Spectral Collocation method based on the shifted Legendre polyno- 
mials was applied to get solution of heat transfer of a micropolar fluid through a 
porous medium with radiation. A similarity transformation is applied to convert 
the governing equations to a system of non-linear ordinary differential equations. 
Then, the shifted Legendre polynomials and their operational matrix of derivative 
are used for producing an approximate solution for this system of non-linear differ-
ential equations. The main advantage of the proposed method is that the need for 
guessing and correcting the initial values during the solution procedure is elimi-
nated and a stable solution with good accuracy can be obtained by using the given 
boundary conditions in the problem. A very good agreement is observed between 
the obtained results by the proposed Spectral Collocation method and those of 
previously published ones.
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Introduction

Since the time of Fourier, orthogonal functions and polynomials have been used in 
the analytic study of differential equations and their applications for numerical solution of ODE 
refer, at least, to the time of Lanczos (1938). It is well known that the eigenfunctions of certain 
singular Sturm-Liouville problems such as Legendre or Chebyshev orthogonal polynomials 
allow the approximation of functions C∞[a, b] where truncation error approaches zero faster 
than any negative power of the number of basic functions used in the approximation, as that 
number (order of truncation N) tends to infinity. This phenomenon is usually referred to as 
spectral accuracy [1-3]. The collocation approach appears to have been first used by Slater and 
by Kantorovic (1934) in specific applications. This approach is especially attractive whenever 
it applies to variable-coefficient and even non-linear problems [4]. Some major advantages of 
the collocation methods are:
– Since no integration is required, the construction of the final system of equations is very 
efficient.
– The functions must be evaluated only at the collocation nodes in contrast to other methods.

* Corresponding authors', e-mails: f.mohammadi62@hotmail.com; mm_rashidi@tongji.edu.cn



Mohammadi F., et al.: Numerical Study of Heat Transfer of a Micropolar Fluid ... 
558	 THERMAL SCIENCE: Year 2018, Vol. 22, No. 1B, pp. 557-565

– Computational cost of calculating non-linear terms is reasonably low with good numerical 
accuracy.

The spectral collocation method has been applied for numerical solution of different 
kind of differential and integral equations. For example, it has been used for deriving approx-
imate solution of stochastic Burgers equation [4], Burgers-type equation [5], Navier-Stokes 
equations [6], two-point boundary value problem in modelling viscoelastic flows [7], Poisson 
equation in polar and cylindrical co-ordinates [8], Volterra integral equations [9, 10], compress-
ible flow, 2-D and axisymmetric boundary-layer problems [11], hypersonic boundary-layer 
stability [12], Helmholtz and variable coefficient equations in a disk [13] and Burgers-Huxley 
equation [14].

The Legendre polynomials [1] are well known family of orthogonal polynomials on 
the interval [0, 1] of the real line. These polynomials present very good properties in the ap-
proximation of functions. Therefore, Legendre polynomials appear frequently in several fields 
of mathematics, physics and engineering. Spectral methods based on Legendre polynomials as 
basis functions for solving numerically differential equations have been used by many authors, 
(see for example [15-17]).

The problem of micropolar fluids past through a porous media has received much at-
tention in several industrial and engineering processes such as porous rocks, foams and foamed 
solids, aerogels, alloys, polymer blends and microemulsions. The simultaneous effects of a fluid 
inertia force and boundary viscous resistance upon flow and heat transfer in a constant porosity 
porous medium were analyzed by Vafai and Tien [18]. Raptis [19] investigated boundary-layer 
flow of a micropolar fluid through a porous medium. Abo-Eldahab and El Gendy [20] consid-
ered the convective heat transfer past a stretching surface embedded in non-Darcian porous 
medium in the presence of magnetic field. Abo-Eldahab and Ghonaim [21] studied the radiation 
effect on heat transfer of a micropolar fluid past on unmoving horizontal plate through a porous 
medium. The DTM in [22] was applied successfully to find the analytical solution of heat trans-
fer of a micropolar fluid through a porous medium with radiation. Rashidi and Mohimanian 
[23] presented complete analytic solution to heat transfer of a micropolar fluid through a porous 
medium with radiation.

Flow analysis and mathematical 
formulation

Consider a steady 2-D flow of an incom-
pressible micropolar fluid through a porous 
medium past a continuously semi-infinite hor-
izontal plate (fig. 1). The governing equations 
of boundary-layer to micropolar fluid through a 
porous medium are given [21-23].
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where k1 = ρS and n = (µ + S) / ρ. By using the Rosselant approximation, we have:
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where σ* is the Stefan-Boltzman constant and k* the mean absorption coefficient. If the flux is 
sufficiently small, T 4 can be expanded as a Taylor series about T. By neglecting higher order 
terms of the Taylor series, we have:
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By substitution from eqs. (6) and (7) in eq. (4) we have:
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By introducing the following similarity transforms [21, 24, 25]
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where ψ is the stream function and is defined as u = ∂ψ/∂y and ν = ∂ψ / ∂x, the governing eqs. 
(1)-(4) are reduced to the following system of ODE :

	 1+ (1 ) (1 ) 0f ff g f N f
M

′′′ ′′ ′ ′ ′′+ + ∆ − + − =  	 (10)

	 2(2 ) 0Gg g f′′ ′′− + =  	 (11)

	 (3 4) 3 Pr 0R R fθ θ′′ ′+ + = 	 (12)

subject to the boundary conditions:

	 (0) 0,  (0) 0, (0) 0, (0) 1
( ) 1,      ( ) 0,     ( ) 0

f f g
f g

θ
θ

′= = = =
′ ∞ = ∞ = ∞ =

	 (13)

where 

	

1

1 0
3

0

Pr   (Prandtl number),       (Coupling constant), 

* =    (Microrotation parametar),       (Radiation parametar),
4 *

  (Permeability parametar),      2 x   (Inertia c
2

pc k
k

G U k kG R
x T

KU
M N C

x

ρν
∆

ν

ν σ

ϕν
ϕν

∞

= =

=

= = oefficient parametar)     

 	(14)



Mohammadi F., et al.: Numerical Study of Heat Transfer of a Micropolar Fluid ... 
560	 THERMAL SCIENCE: Year 2018, Vol. 22, No. 1B, pp. 557-565

Shifted Legendre polynomials and their properties

The well known Legendre polynomials are defined on the interval and can be deter-
mined with the aid of the following recurrence formulae [1, 26-28]:
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where L0(t) = 1, L1(t) = t. In order to use Legendre polynomials on the interval [0, 1] we 
define the so-called shifted Legendre polynomials by introducing the change of variable  
t = 2x − 1. The orthogonality condition for these polynomials is:
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A function f (t) defined over [0, 1] may be expanded in the terms of shifted Legendre 
polynomials:
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where ck = [f (t), Pk (t)], in which (...) denotes the inner product. If the infinite series in eq. (17) 
is truncated, then it can be written:
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where C and Φ(t) are (N + 1) vectors given by:
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In the next theorem we derived a relation between shifted Legendre polynomials and 
their derivatives that is very important for deriving the operational matrix of derivative for 
shifted Legendre polynomials.

Theorem 1. Let Ψ(t) be the Legendre polynomial vector defined [26-28]:
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which D is (N + 1) × (N + 1) matrix and its (i, j)th element is defined:
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Method of solution

Consider the coupled non-linear differential eqs. (7) and (8) subject to boundary con-
ditions (10). By using change of variable:
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we have the following non-linear differential systems in the interval [0, 1],
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the boundary conditions become
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Now we expand the unknown function F(t), H(t) and ϑ(t) by the shifted Legendre 
polynomial into interval [0, 1] as:

	  1 2 2( ) ( ),      ( ) ( ),      ( ) ( )T T TF t C t H t C t t C tϑΦ Φ Φ   	 (28)

where C1, C2, and C3 are the unknown shifted Legendre polynomial coefficient vectors defined 
in eq. (19). By using the operational matrix derived in eq. (21) we get:
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substituting eqs. (29)-(31) in eqs. (24)-(26), we have:
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Moreover, boundary conditions (27) result:
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To find the approximate solution of the non-linear system (24)-(26), we use the typical 
collocation method and collocate eqs. (33) and (34) at (M − 1) different points and eq. (32) at 
(M − 2) different points in the interval [0, 1]. For choosing suitable collocation points, we use the 
first roots of shifted Legendre PM+1 (t). These equations together with eqs. in (35) generate 3(M + 1) 
non-linear equations. The well-known Newton-Raphson have been used for approximate solu-
tion of derived non-linear systems. After finding the solution of this non-linear systems we 
obtain unknown vectors C1, C2, and C3. By substituting these vectors in eq. (28) the solution 
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functions F(t), H(t), and ϑ(t) can be approximated. Now, the change of variable in eq. (23) re-
sults approximation of functions f (η), g(η), and θ(η).

Numerical results

In this section, the Legendre Collocation method presented in previous section was 
applied to approximate solution of the non-linear differential eqs. (10)-(12) subject to the bound-
ary conditions (13). In order to verify the results of this study, the results have been compared 
with previously published results from the literature. Table 1 shows the values of f ′′(0), −g′(0) 
and −θ′(0) for different values of permeability parameter, M – coupling constant, Δ – radiation 
parameter, R and G = 2, N = 0.1, Pr = 0.7. The results reveal that as the permeability parameter 
increase the wall temperature gradient θ′(0) and rate of change g′(0) are increase while the shear 
stress decrease. 

Table 1. Variation of f ′′ (0), −g′ (0) and −θ′ (0) for different values of M, Δ, R and  
G = 2, N = 0.1, and  Pr = 0.7

f ′′(0) −g′(0) −θ′(0)
M Δ R Present Ref. [21] Present Ref. [21] Present Ref. [21]

0.5 0 0.1 1.519462 1.519402 0.533807 0.533808 0.203431 0.203438
0.5 0.5 0.01 1.473758 1.473730 0.534186 0.534188 0.170620 0.170621
0.5 0.5 0.1 1.473758 1.473730 0.534186 0.534188 0.203579 0.203581
0.5 0.5 1 1.473758 1.473730 0.534186 0.534188 0.359838 0.359834
0.5 0.5 2 1.473758 1.473730 0.534186 0.534188 0.413383 0.413389
0.5 0.5 4 1.473758 1.473730 0.534186 0.534188 0.453060 0.453065
0.5 0.5 10 1.473758 1.473730 0.534186 0.534188 0.484063 0.484069
0.6 0.5 0.1 1.360425 1.360340 0.516888 0.516889 0.202930 0.202933
0.7 0.5 0.1 1.273568 1.273590 0.502783 0.502788 0.202394 0.202391
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Figure 2. Variation of the dimensionless temperature; (a) M = Δ = 0.5, N = 0.1, G = 2, Pr = 0.7 and 
different values of R, (b) M = 0.5, R = N = 0.1, G = 2, Pr = 0.7 and different values of Δ

Moreover, as the radiation parameter decrease, the wall temperature gradient θ′(0) increases 
and shear stress f ′′(0) and rate of change g′(0) have no changes. Figs. 2(a) and 4(a) show numer-
ical solution derived by the Legendre Collocation method for various values of permeability, 
vortex-viscosity, and radiation parameters. The effect of radiation on the dimensionless tem-
perature θ profile are presented in fig. 2(a). 
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Figures 2(b) and 3(b) show the effects of the 
vortex-viscosity parameter Δ on the velocity of 
the fluid, dimensionless temperature and angu-
lar velocity of the microstructures. It is easily 
concluded from this figures that as Δ increase, 
the fluid velocity and temperature of the micro-
structure increase. The variation of permeabil-
ity parameter M and its effects on the velocity 
of fluid, temperature distribution and angular 
velocity of microstructures are plotted in figs. 
4(a) and 5.

Conclusions

In this study, we have introduced an efficient Spectral Collocation method based on 
the shifted Legendre polynomials to get solution of heat transfer of a micropolar fluid through 
a porous medium with radiation. This proposed approach is simple in applicability, as it does 
not require initial values during the solution procedure. Moreover, by using the given boundary 
conditions in the problem, a stable solution with very good results can be obtained. The effects 
of permeability, vortex-viscosity and radiation parameters are examined on the velocity of fluid, 
temperature distribution and angular velocity of microstructures. A very good agreement is ob-
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Figure 5. Variation of the dimensionless angular 
velocity g for Δ = 0.5, R = N = 0.1, G = 2, Pr = 0.7 
and different values of M
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served between the obtained results of by the proposed Spectral Collocation method and those 
of previously published ones.

Nomenclature	
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