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In this article, we have investigated thermal-diffusion and diffusion-thermo effects 
on unsteady flow of electrically conducting Eyring-Powell fluid over an oscillato-
ry stretching sheet by using convective boundary conditions. A set of appropriate 
variables are used to reduce number of independent variables in governing equa-
tions. Series solution is computed using homotopy analysis method. The effects of 
various parameters of interest on the velocity filed, temperature profile, concen-
tration profile, skin friction, local Nusselt number and local Sherwood number are 
illustrated graphically and discussed in detail.
Key words: Eyring-Powell fluid, Dufour number, oscillatory stretching sheet, 

Soret number

Introduction

Recently, interest in boundary-layer flow with heat/mass transfer in the presence of 
chemical reaction has attracted the attention of researchers because of its several significant 
applications. Such applications include, food processing, cooling towers, packed sphere bed, 
spinning of fibers and many more. Another important application of such phenomenon can be 
encountered in power energy. These numerous applications lead the researchers to devote their 
attention to analyze the effects of heat and mass transfer in viscous and viscoelastic fluids over 
stretching surfaces. Alharbi et al. [1] investigated the flow of second grade fluid in presence of 
heat and mass transfer over porous stretching sheet. Numerical using fourth order Runge-Kutta 
method combined with shooting technique. Hayat et al. [2] studied the effects of heat and mass 
transfer in presence of chemical reaction in viscoelastic fluid-flow over stretching surface. Vee-
na et al. [3] presented analytic solution in terms of Kummer’s function for viscoelastic fluid- 
-flow to analyze heat transfer phenomenon. The effects of heat and mass transfer in steady flow 
of second grade fluid were discussed by Sanjayanand and Khan [4]. The existence of multiple 
solutions in heat and mass transfer of MHD slip flow of the viscoelastic fluid over a stretching 
sheet was discussed by Turkyilmazoglu [5]. Hamad et al. [6] investigated the radiation effects 
in steady flow of viscous fluid with heat and mass transfer. Takhar et al. [7] used finite differ-
ence scheme to discuss viscous fluid-flow with heat mass transfer over a stretching surface. 
The MHD free convective flow along with heat and mass transfer and chemical reaction over a 
stretching sheet was discussed by Afify [8].
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In many situations, simultaneous effects of heat and mass transfer effects are observed 
during motion of the fluids. In this case the heat flux is produced by both temperatures as well 
as concentration gradients. 

The occurrence of diffusion flux due to temperature gradient results in thermal-diffu-
sion which is called Soret effects. The opposite effects are known as Dufour effects which are 
produced because of chemical potential gradient due to energy flux. The effects are encountered 
in geosciences and chemical industries. Anghel et al. [9] included Dufour and Soret effects in 
flow of viscous fluid over a porous vertical surface. Sunder et al. [10] used Darcian porous 
medium to predict Soret and Dufour effects in heat and mass transfer flow of Newtonian fluid 
over a vertical surface. The mixed convection flow of viscous fluid subject to Soret and Dufour 
effects was carried out by Srinivasacharya and RamReddy [11]. Beg et al. [12] presented nu-
merical investigation of flow of viscous fluid subject to Soret and Dufour effects. Cheng [13] 
presented numerical study of Power law fluid with variables heat and mass fluxes and Soret and 
Dufour effects. The numerical computations were carried out by cubic spline collocation meth-
od and results were found in good agreement with earlier results. Shateyi et al. [14] examined 
the Soret and Dufour effects along with hall currents and mixed convection on MHD flow over 
a vertical surface. The viscous fluid-flow in presence of Soret and Dufour effects over oscillato-
ry stretching sheet was analyzed by Zheng et al. [15]. This work was recently extended by Ali 
et al. [16] for viscoelastic fluid flow in a porous medium. 

The literature survey previously provided indicates that Soret and Dufour effects in 
presence of chemical reaction in unsteady laminar flow of Eyring-Powell fluid [16-22] over 
an oscillatory stretching sheet are still not investigated. The aim of present work is to carry 
out such an analysis. The heat transfer problem is formulated by using convective boundary 
conditions. Series solution is computed using homotopy analysis method [23-26]. Results 
obtained through computations are illustrated graphically for several values of parameters 
of interest.

Flow analysis

Consider time-dependent laminar boundary-layer flow of incompressible electrical-
ly conducting Eyring-Powell fluid over an oscillatory stretching sheet. The stretching sheet 

is oscillating with velocity u = uω
 =  

= bx̅ sin  ωt where b denote the stretching 
rate and ω is the angular frequency. Let 
Tf and T∞ denotes convective fluid tem-
perature below the sheet and free stream 
temperature, respectively. Let Cw rep-
resents the concentration at the wall 
while the concentration far away from 
the surface is denoted by C∞. A constant 
magnetic field of strength B0 is imposed 
normal to sheet. A schematic diagram of 
the flow geometry is illustrated in fig. 1. 
The boundary-layer equations for flow 
under consideration are:

	 0u v
x y
∂ ∂

+ =
∂ ∂  	 (1)

Eyring Powell �uid

T T C C— , —∞
∞

u
—

y
—

0
 a

s
∞ y

B0

Boundary

layer x
0

–k ∂T
∂y
–– = ( ),h T – T C = Cf w

u = bx sin t yw ω at = 0– –

T T C C— , —∞ ∞

Figure 1. Geometry of the problem
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The eqs. (1)-(4) are subject to the following boundary conditions:

	 ( )sin ,    ,  ,  ,   at 0,   0w w f w
Tu u bx t v v k h T T C C y t
y

ω ∂
= = = ± − = − = = >

∂
	 (5)

	 0, , asu T T C C y∞ ∞→ → → = ∞  	 (6)

where the velocity component u and v are taken along x̅- and y̅-directions, respectively, n rep-
resents the kinematic viscosity, ρ – the density, β and c – the parameters of Eyring-Powell 
model, σ – the electrical conductivity, vw – the suction (vw < 0) or injection (vw > 0) parameter, 
cp – the specific heat, T – the temperature, α – the thermal diffusivity, kT – the thermal diffusion 
ratio, Dm – the molecular diffusivity, Tm – the mean fluid temperature, cs – the concentration 
susceptibility, h – the heat transfer coefficient, Q – the volumetric heat transfer, k1 – the reaction 
rate constant. In eq. (5) the last expression represents the convective boundary conditions, in 
which h denotes the heat transfer coefficient and k is the thermal conductivity of the fluid. The 
appropriate dimensionless variables are [15]:

	 ( ) ( ),      ,       , ,     ,y
by y t u bxf y v b f yτ ω τ ν τ
ν

= = = = − 	 (7)

	 ( , ) ,      ( , )
f w

T T C Cy y
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− −
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Making previous variables, eq. (1) is satisfied identically and eqs. (2)-(4) transform to:

	 ( ) 2 2 21 Ha 0yyy y y yy y yy yyyK f Sf f ff f K f fτ λ+ − − + − = 	 (9)

	 ( )Pr Du Pr 0yy yy yf S τθ φ θ θ γθ+ + − + = 	 (10)

	 ( )Sc Sr c 0yy yy yf S Sτφ θ φ θ β φ+ + − − = 	 (11)

The boundary conditions govern in eqs. (5) and (6) become:

	 ( ) ( ) ( ) ( )10, sin ,    0, ,    (0, ) 1 0, ,   0, 1y w yf f fτ τ τ θ τ γ θ τ φ τ= = = − − =   	 (12)

	 ( ), 0,    ( , ) 0,   ( , ) 0yf τ θ τ φ τ∞ = ∞ = ∞ = 	 (13)

In previous equations K = 1 / µβC and λ = x̅ 2b3 / 2nC2 are the dimensionless Eyring- 
-Powell fluid parameters. The parameter λ is the local non-Newtonian parameter because of 
its dependence on the length scale x̅. Due to this dependence λ varies along the flow direc-
tion and thus the solution of eq. (9) is locally similar [18]. The graphical results for particular 
value of λ represent the variation in flow along the vertical direction at a specific longitudinal 
position x̅. Moreover, S ≡ ω / b denotes the ratio of oscillation frequency to stretching rate,  
Ha2 = σB2

0 / ρb – the Hartmann number,  fw = – nw
 / (bn)1/2 – suction (fw > 0) or wall injection (fw < 0) pa-



Ullah Khan, S., et al.: Soret and Dufour Effects on Hydromagnetic Flow of ... 
536	 THERMAL SCIENCE: Year 2018, Vol. 22, No. 1B, pp. 533-543

rameter, Pr = n / α – the Prandtl number, Du = DmkT (Cw – C∞) / cscp n(Tf – T∞) – the Dufour num-
ber, Sr = DmkT(Tf – T∞) / Tm n(Cw – C∞) – the Soret number, Sc = n / Dm – the Schmidt number, 
β = k1 / b – the chemical reaction parameter, γ = Q / bρcp – the heat generation (γ > 0) or absorp-
tion (γ < 0) parameter, and γ1 = (h / k)(n / b)1/2 – the Biot number.

The mathematical expression for the skin-friction coefficient, Nusselt number and and 
Sherwood number can be expressed:

	 ( ) ( )2 ,    Nu ,    Shw w m
f

B ww f

xq xq
C

D C Cu k T T
τ
ρ ∞∞

= = =
−− 	 (14)

where shear stress, surface heat flux, and mass flux are denoted by τw, qw, and qm, respectively. 
Using eqs. (7) and (8), eq. (14) takes the following form:
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where Rex = uwx̅ / n is the local Reynolds number.

Homotopy analysis method

To compute series solution of eqs. (9)-(11) with boundary conditions of eqs. (12) and 
(13), we use homotopy analysis method. To start our simulation, the approximate initial guesses 
are: 
	 [ ]0 0 0( , ) sin 1 exp( ) ,   ( ) exp( ), ( ) exp( )

1wf y f y y y y yγτ τ θ φ
γ

= + − − = − = −
+

	 (16)

We define linear operators:
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f f f f£ f £ f f £ f f

yy y yθ φ
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satisfying:
	 1 2 3[ exp( ) exp( )] 0f£ A A y A y+ + − = 	 (18)

	 4 5[ exp( ) exp( )] 0£ A y A yθ + − = 	 (19)

	 6 7[ exp( ) exp( )] 0£ A y A yθ + − = 	 (20)

where Ai (i = 1, 2,..., 7) appeared in eqs. (16)-(18) are constants. 
The further procedural details of this method can be found in [23] and the latest book 

by Liao [26].

Result and discussion

It is well established fact that the auxiliary parameters play an important role within 
the frame of the homotopy analysis method. The rate of convergence depends upon the proper 
choice of these parameters. To highlight convergence region, we draw the h-curves in figs. 2(a)-
2(c). We see that these curves predict that convergent solution for temperature, velocity and 
concentration fields can be obtained when –1.1 ≤ hf ≤ –0.1, –1.5 ≤ hθ ≤ 0.5, and –1.3 ≤ hϕ ≤ –0.4.

Figures 3(a) and 3(b) displays the variation of velocity with time under influence of 
two important parameters namely, Eyring fluid parameter, K, and Hartmann number. From 
fig. 3(a), we observe that velocity shows oscillatory behavior and its amplitude increases with 
increasing K. Figure 3(b) elucidates the effects of suction/blowing parameter, fw, on dimension-
less velocity profile f ′. It is noticed that a phase shift occurs and amplitude of velocity decreases 
with increasing suction/blowing parameter fw. 
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The effects of Eyring-Powell fluid parameter, Hartmann number, and suction/injec-
tion parameter on transverse distribution of velocity at a time τ = π / 2 are shown in fig. 4. Figure 
4(a) depicts that velocity increase with increasing the Eyring-Powell fluid parameter. Figure 
4(b) depicts that the velocity profile decreases rapidly with increasing the Hartmann number, 
Moreover, the boundary-layer thickness also decreases in this case. From fig. 4(c), it has been 
noticed that increase in suction/blowing parameter, fw, causes the thinning of the boundary-layer 
and velocity profile decreases with increasing suction/blowing parameter.

The influence of K on both temperature and concentration profiles at τ = π / 2 is shown 
in fig. 5. A significant decreasing effect in temperature is seen near the wall. Similar effects are 
observed in fig. 5(b). However, the change in concentration field with increasing K is smaller as 
compared to the corresponding change in temperature field.
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Figure 6 illustrates the effects of Hartmann number on temperature and concentration 
profiles at τ = π / 2. The temperature inside the thermal boundary-layer is found to be enhanced 
with increasing Hartmann number. The variation of concentration for different values of Hart-
mann number is shown in fig. 6(b). It is observed that concentration profile slightly increases 
with increasing Hartmann number. 

Figure 7 shows the variation of suction/blowing parameter on temperature and con-
centration profiles at τ = π / 2 by keeping other parameters constant. The dimensionless tempera-
ture inside the thermal boundary-layer is found to decrease in the case of suction. However, an 
increase in temperature and corresponding thermal boundary-layer thickness is noted for the 
injection case and corresponding thermal boundary-layer thickness increases. Similar observa-
tions are made through the examination of concentration profiles, fig. 6(b).
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Figure 8 is sketched to see the temperature profiles for various values of Pr, Du, γ1, and 
γ at τ = π / 2. Figure 8(a) indicates that an increase of Prandtl number reduce the thickness of 
thermal boundary-layer. The effect of Dufour number on temperature field is shown in fig. 8(b). 
An increase in Dufour number leads to an increase in the temperature. The thermal boundary- 
-layer is also found to increase for larger values of Dufour number. In fact, increase in Dufour 
number causes increase in energy flux due to concentration gradient which is responsible for the 
increases of temperature. Figure 8(c) predicts the behavior of thermal Biot number on tempera-
ture θ. With an increase in γ1, the heat transfer coefficient increases and as a result temperature 
of fluid rises. Figure 8(d) depicts that temperature increases with increasing the strength of the 
heat generation parameter. In contrast, the temperature decreases with an increase in heat ab-
sorption parameter. This result is of key importance for the flows where heat transfer is of prime 
importance. The effects of Schmidt number, Soret number, and chemical reaction parameter, β, 
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on concentration field, ϕ, are shown in fig. 9. Figure 9(a) illustrates that as we increase Schmidt 
number, mass diffusion reduces and thus the concentration field decreases. Figure 9(b) depicts 
that increase in Soret number results in increase in concentration field. The concentration de-
creases with chemical reaction parameter β, fig. 9(c). Physically, larger values of β correspond 
to larger interfacial mass transfer rate and as a result concentration decreases.

Figure 10 illustrates the variation of wall shear stress with time for different values of 
Hartmann number, and Eyring-Powell fluid parameter, K. From fig. 10(a), it is observed that 
skin friction oscillates periodically due to the oscillatory surface and amplitude of oscillation 
increases with increasing Hartmann number. The effects of fluid parameter on wall shear stress 
are quite opposite. Here, amplitude of skin friction decreases by increasing fluid parameter. Fig-
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ure 11(a) depicts the effects of Prandtl number on time-series of local Nusselt number examined 
by keeping other parameters constant. It is interesting to note that amplitude of local Nusselt 
number increases with an increase in Prandtl number. Figure 10(b) shows the on time-series of 
local Sherwood number for various values of Schmidt number. Here it is noted that amplitude 
of oscillations in local Nusselt number increases with an increase in Schmidt number.

The velocity, temperature and concentration profiles for various time instants are 
shown graphically in figs. 12(a)-12(c). Figure 12(a) shows that velocity component oscillates pe-
riodically between –1 to 1 because of the oscillatory nature of the sheet. Figures 12(b) and 12(c) 
shows that temperature and concentration profiles decrease as time increases from π / 6 to 2π / 3.

Conclusion

This paper highlights the Soret and Dufour effects in 2-D flow of Eyring-Powell fluid 
over an oscillatory stretching sheet. Furthermore, heat transfer analysis is carried out in the 
presence of chemical reaction and convective boundary conditions. The impact of various pa-
rameters of interest is discussed graphically. The larger values of Eyring-Powell fluid parameter 
enhances the amplitude of velocity and boundary-layer thickness. However, opposite effects 
are observed in temperature and concentration profiles. Moreover, the temperature is found to 
decrease with increasing values of suction while it increases in the case of injection. It is also 
observed that the temperature and concentration field are increasing functions of Hartmann 
number. Similarly, temperature inside the thermal boundary-layer increases with an increase in 
Dufour and Biot numbers. Finally, concentration and concentration boundary-layer thickness 
decrease by increasing dimensionless Schmidt number and reaction rate parameter.
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