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The paper considers two-phase gas-solid turbulent flow of pneumatic transport in 
straight horizontal channels with a non-circular cross-section. During turbulent 
flow, a specific flow phenomenon, known as secondary flow, occurs in these 
channels in the cross-sectional plane. The existence of strong temperature gradi-
ents in the cross-sectional plane of the channel or the cases of curved channels 
result in the appearance of the secondary flow of the first kind. However, in 
straight channels with a non-circular cross-section, in the developed turbulent 
flow mode, a secondary flow, known as Prandtl’s secondary flow of the second 
kind, is induced. The paper presents a numerical simulation of a developed two-
phase turbulent flow by using the PHOENICS 3.3.1 software package. Reynolds 
stress model was used to model the turbulence. The paper provides the data on 
the changes in turbulent stresses in the channel cross-section as well as the ve-
locities of solid particles transported along the channel. 
Key words: computer simulation, pneumatic transport, solid particles,  

two-phase flow, secondary flow 

Introduction 

Engineering practice provides frequent examples of two-phase gas-solid type flows 
in channels with a non-circular cross-section. The most common examples of this type of 
flow occur in the systems of pneumatic transport of granular material, air conditioning, and 
ventilation systems, process, and energy systems. Generally, two-phase flows are character-
ized by a special complex of flow phenomena which are the consequences of the interaction 
between the gas and solid phase, chemical reactions between the phases, elaborate heat flows 
with the volumetric effects of gas radiation and surface effects of particle radiation. Such 
flows have an important influence in the complete mechanism of mass, momentum, and heat 
transfer in the channel and its environment. 

The paper considers two-phase gas-solid type flow in straight channels with a non- 
-circular cross-section. The movement of solid particles along the channel is made possible by 
the action of an air flow. Solid particles, i. e. transported material, move due to the fact that air 
flow act on them by aerodynamic forces, which become strong enough at appropriate air ve-
locities for the material particles to be carried by gas flow. In this case, the flow in the chan-
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nels is highly turbulent, which is the main cause of all obstacles in shedding some light on the 
process of momentum, heat, and mass transfer in two-phase flows. 

Apart from the basic flow along the channel, which is turbulent in itself, in these 
channels a specific flow phenomenon occurs in the developed turbulent flow, i. e. secondary 
flow in the plane of the channel cross-section. The mechanisms which lead to the occurrence 
of these secondary flows are different. In curved channels, where the centrifugal force acts 
perpendicularly on the primary flow direction inducing pressure difference in the channel 
cross-section, which results in the appearance of secondary flow. This mechanism is charac-
teristic of both the turbulent and laminar flow in channels with a circular cross-section. This 
type of secondary flow also appears in the case of the existence of strong temperature gradi-
ents in the cross-sectional plane of the channel, i. e. one of the channel walls is thermally 
loaded, while the others are not. Such secondary flows are known as Prandtl’s secondary 
flows of the first kind. However, in completely straight channels with a non-circular cross- 
-section, and only in the developed turbulent flow, a secondary flow known as Prandtl’s sec-
ondary flow of the second kind is induced in the channel cross-section. Even though the level 
of velocity of the secondary flow of the second kind is only 2-3% of the average velocity of 
the main flow, it still has an important influence on the complete mechanisms of momentum, 
heat and mass transfer in the channel and its environment. The large momentum transfer to-
wards the channel vertices causes large gradients of transverse velocities in the cross-sectional 
plane of the channel. In open channels, secondary flow moves the fluid with a relatively small 
momentum towards the central part of the channel and causes a certain depression in the ve-
locity maximum below the free surface of the fluid. In turn, secondary flow produces an in-
creased shear stress towards the channel vertices, which is highly significant in the cases of 
transport of certain sediments, or when solving the problem of channel erosion. Furthermore, 
secondary flow greatly influences the intensity of heat transfer from the fluid to the channel 
wall and vice versa. This flow definitely exerts lesser influence than the secondary flow of the 
first kind, however, it cannot be neglected, particularly in the cases of the two-phase gas-solid 
type flow with a high Stokes number, i. e. the cases of pneumatic transport of solid particles 
with a small diameter. 

To determine the velocities of solid particles of the transported material, the paper 
employs a full Reynolds stress model of turbulence, where each component of Reynolds 
stresses is determined from its own transport differential equation. These equations are not 
exact conservation equations, but modelled ones [1]. The basic principle used to obtain these 
equations is to retain the correlations in their original form up to the second order, and to 
model the terms which contain the third- or higher-order correlations, of same or different 
physical quantities, using the gradient method, i. e. express them through the gradients of 
known physical quantities and model constants. 

Physical model of the gas and solid phase 

To generate the secondary flow of the second kind, the paper considers a fully de-
veloped turbulent flow, which implies that the velocity profiles, i. e. velocities in cross-
sections, are stable or not changing in a straight channel with a square cross-section whose 
walls are loaded by uniform temperature flux. It is a known fact that turbulence, which is in 
its nature a highly unsteady, non-linear, irreversible, stochastic and 3-D phenomenon, consti-
tutes the basis of all processes of momentum, heat and mass transfer. The appearance of 
Prandtl’s secondary flow of the second kind in non-circular straight channels is the conse-
quence of the turbulent flow. The generation of the secondary flow of the second kind de-
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pends, above all, on the turbulent fluctuations of the velocity field, while the existence of 
Reynolds stress gradients promotes the secondary flow of fluids. In the case of a stationary 
and incompressible flow, the transport equation for the vorticity component perpendicular to 
the plane of the cross-section Ω1 has the following form: 
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where the vorticity vector components are defined:  
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The physical sense of the terms of transport eq. (1), for the vorticity component per-
pendicular to the plane of the cross-section Ω1 is: A1 – the convective transport of the vorticity 
component Ω1 in the main fluid flow, A2 – the effects of vortex elongation or compression 
caused by the gradients of the averaged main flow velocity, which is in principle the main 
promoter of the secondary flow of the first kind, A3, A4, and A5 – the influence of turbulent 
stresses on the production or destruction of the vorticity component Ω1, and A6 – the process 
of viscous dissipation of the vorticity component Ω1. 

For a fully developed turbulent flow, transport eq. (1) for Ω1 the vorticity component 
perpendicular to the plane of the cross-section, when all gradients along the axis of the main 
flow are equal to zero, has the following form: 
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By analyzing the terms of the eq. (2) for turbulent vorticity Ω1, one can reach a con-
clusion that the turbulent terms A4 and A5 are of the same order, have a dominant role, oppo-
site signs and are separately much larger than the convective term A1. The viscous term A6 is 
negligibly small, except in the wall zone of channel vertices. This leads to the conclusion that 
the difference lies between the turbulent terms A4 and A5 which are of the same order as the 
convective term A1, which finally implies that that difference between the relatively large tur-
bulent terms is the mechanism which generates secondary flow, [1]. In other words, second-
ary flow is the consequence of transverse gradients of primary shear stresses in the area of 
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channel vertices. This is why it is crucial to model all Reynolds stresses as accurately as pos-
sible for the purpose of realistic simulation of the secondary flows of the second kind in a 
straight channel with a square cross-section during a developed turbulent flow. 

Two-phase flows are characterized by a complex of a large number of mutually con-
nected, in themselves elaborate phenomena, which are the consequences of the influence be-
tween the phases. In the consideration of such flows with the interaction between the phases, a 
combined approach to the solution of the flow field is adopted in flow modelling. The gas 
phase is solved by applying the Euler approach – the concept of continuum, while the solid 
phase is solved by applying the Lagrange approach – the concept of monitoring particles tra-
jectories. The interphase interaction between the gas and solid phase is obtained through the 
iterative procedure of problem solution: 

First step: At the beginning of the integration of conservation equations, the gas 
phase is first solved without the presence of interphase terms. 

Second step: After a certain number of iterations, the obtained gas current field is 
frozen and particles are run through it. On the basis of the obtained particles trajectories, the 
interphase terms of the interaction between the solid and gas phase are determined. 

Third step: Particles trajectories are frozen and the gas phase flow field is solved 
again, but now with the interphase terms obtained in the previous step. 

Fourth step: If the solution convergence is not achieved, steps two and three are re-
peated successively until the pre-set criterion of the solution convergence is reached. 

To define a mathematical model of the gas phase, the following assumptions are 
adopted: the flow is steady, 3-D, incompressible, isothermal and chemically inert. 

To define a mathematical model of the solid phase, the following assumptions are 
adopted: particles are of varying dimensions, particles do not change their mass while travel-
ling through the channel, particles have a constant temperature in the channel, the influence of 
particle collisions is neglected, particles lose a certain degree of momentum upon hitting the 
channel walls and internal obstacles, particles move stochastically, i. e. the turbulent flow 
field of the gas flow modulates deterministic particles trajectories which are obtained from the 
averaged values of the gas flow velocities. 

Mathematical model of the gas phase 

The mathematical model of the gas phase is formed for a 3-D fully developed turbu-
lent flow in a straight channel with a square cross-section, and this fully developed turbulent 
flow implies that the velocity profiles in cross-sections are stable, i. e. not changing. Steady, 
incompressible, turbulent flow is assumed where the channel walls have a constant tempera-
ture, different from the environmental temperature. Gravity volume force and temperature 
buoyancy effects are neglected. In such a case, the general equation of momentum, heat and 
mass transfer for the gas phase is identical to the generally known field conservation equation 
(Reynolds) for a single-phase fluid with the addition of the interphase term, [2]: 
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Under the conditions of isothermal flow, the effects of buoyant flow, caused by the 
temperature gradients, are negligible, and the density of the gas phase can be considered con-
stant. Thus, according to the adopted assumptions of the physical model, the averaged equa-
tions of momentum, heat and mass conservation have the following forms: 
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–  continuity equation 
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– momentum equation 
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– energy equation 
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Turbulent models 

The starting basis for the formation of a stress model of turbulence is the transport 
equation which defines the dynamics of Reynolds stresses [1, 3], and which can be presented 
in the following form for an incompressible fluid (Rotta): 
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The terms in the eq. (7) have the following physical interpretation: a is the local 
change in turbulent stresses, b – the convective change in turbulent stresses, c – the generation 
of turbulent stresses due to the action of the fluctuating component of volume forces, d – the 
generation of turbulent stresses due to the deformation of the main flow, e – the viscous dissi-
pation of turbulent stresses, f – the redistribution between certain components of turbulent 
stresses due to the action of the fluctuating pressure, and g – the diffusion transport of turbu-
lent stresses due to the fluctuation of velocity (term g1), pressure (term g2) and molecular 
transport (term g3). 

The stress turbulence model implies a simultaneous solution of transport eq. (7), 
with the momentum eq. (5) in the Reynolds averaged form. However, in its exact form only 
these terms can be treated: a, b, d, and g3, with the addition of term c in specific situations, 
while the other terms: e, f, g1, and g2, represent the correlations which have to be modelled in 
the function of the available dependent variables. 

Dependent variables that are available for the modelling of unknown terms, for 
which the transport equations are solved, in the stress turbulence model are: the averaged ve-
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locity Ui, the turbulent stresses i ju uρ  and the velocity of the dissipation of the turbulent ki-
netic energy: ε = n(∂ui/∂xk)2. The velocity of the dissipation of the turbulent kinetic energy is 
a phenomenon linked to the smallest vortex structure, but which, above all, depends on the 
energy dominant vortices, thus it can also be used as a variable which defines the size of these 
vortices. However, for the purpose of characterization of the time scope of turbulence, an ad-
ditional variable is introduced, this being the kinetic turbulence energy, k, itself. 

The transport differential equation for turbulent temperature fluxes iuθ has the fol-
lowing form, [1]: 
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The terms in the above equation have the following physical interpretation: a is the 
local change in turbulent temperature fluxes, T

iPθ – the generation of turbulent temperature 
fluxes using the gradient of averaged temperature, U

iPθ  – the generation of turbulent tempera-
ture fluxes using the gradient of averaged velocity, iBθ  – the generation of turbulent tempera-
ture fluxes using the buoyancy forces, ν

θiD  – the viscous dissipation of temperature fluxes, 
θiDθ – the turbulent diffusion due to velocity fluctuations, p

θiD – the turbulent diffusion due to 
pressure fluctuations, θiΦ – the redistributive pressure-temperature correlation, and θiε – the 
velocity of the dissipation of turbulent temperature fluxes. 

The production terms , , and ,T U
i i iP P Bθ θ θ generated by the gradient of averaged temper-

ature, the gradient of averaged velocity and the buoyancy forces, respectively, can be retained in 
the original form, while the terms , ,  and ν θ

θ θ θ θ θθ Φ ε= + + p
i i i i iiD D D D , have to be modelled. 

The modelling of the terms in transport eq. (7) leads to the closed form of the 
transport equation for Reynolds stresses, which reads: 
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the modelled terms have the following forms in the previous transport equation:  
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The closing of the stress model for Reynolds stresses, eq. (9) is performed by an ad-
ditional transport differential equation for the dissipation of the kinetic energy of turbulence, 
so that ε is the dissipation of the kinetic energy of turbulence appears as a new additional var-
iable which is determined from its own transport equation: 
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The empirical coefficients of the turbulence model for Reynolds stresses are shown 
in tab 1. 

Table 1. 

The modelled forms of the terms in eq. (8) lead to the closed form of the transport 
equation for turbulent temperature fluxes:  
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the modelled terms have the following forms in the previous transport equation:  
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The empirical coefficients of the model of turbulent tem-
perature fluxes are shown in tab. 2. 

Mathematical model of the solid phase 

The presence of solid particles in gas flows which are encountered in the vast majori-
ty of engineering processes complicate the problem to a large extent, both because of the need 
to model the flow of the discrete phase and due to the interaction between the phases. The 
presence of particles creates aerodynamic resistances which causes the change in the momen-
tum of both phases. The mathematical model of the solid phase is based on the Lagrange con-
cept of problem solution, which is closer to reality and enables a more realistic picture and 
more reliable prediction of the movement of solid particles in fluid turbulence thanks to a larg-

C′g C1 C2 Cz1 Cz2 Cμ Cε Cε1 Cε2 

0.21 1.50 0.40 0.50 0.06 0.09 0.15 1.44 1.90 

Table 2  

Cθ Cθ1 Cθ2 Cθz1 

0.11 2.45 0.66 0.80 
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er amount of information. The Lagrange concept implies the monitoring of trajectories of the 
transported material solid particles. On the basis of this concept, one can determine the posi-
tions – trajectories of solid particles, their momentum, velocity, temperature as well as mass 
change along those trajectories, and finally determine the interphase terms in motion eq. (5). 

Solid particle positions are determined by solving the following motion equation for 
each group of particles: 

 p
p

d
d
x

U
t
=   (12) 

The current velocity of solid particles pU  is determined from the solid phase mo-
mentum equation: 
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In eq. (13), the first term on the right side of the equals sign, A, represents the force 
of resistance to the movement of particles in relation to the gas phase and is the dominant 
force which acts on the solid particles in the direction of the flow, causing their motion. The 
second term, B, represents the gravitational force, while the third term, C, represents the 
buoyancy force. The gravitational and buoyancy forces are perpendicular to the direction of 
the particle movement, i. e. to the direction of the force of resistance to the relative move-
ment, but are of opposite senses, thus it can be assumed that their actions on a solid particle of 
the transported material are in equilibrium when solving this problem. Since the vertical forc-
es are in balance, i. e. they do not affect the movement of solid particles, only the force of re-
sistance reaction acts on the particles of the transported material, which causes the solid parti-
cles to move along the channel. The other forces that act on the solid particles are neglected: 
the force due to the increase in the pressure gradient, Basset, Saffman and Magnus force. 

In the previous equation, in the expression for the force of resistance reaction,  
pℜ  – represents the function of the resistance of a solid particle and it is determined from the 

following expression: 

 p p p0,5 DA C U Uρℜ = −   (14) 

where CD is the coefficient of the resistance of a solid particle, determined from the expres-
sion: 

 0,687
4 1,16

24 0, 42(1 0,15 Re )
Re 1 4, 25 10 ReDC −= + +

+ ⋅
 (15) 

and applied for spherical particles of the transported material as well as for the Reynolds 
number Re < 105. 

Integration of the particle momentum equation 

The integration of the momentum equation of the transported material particles is 
conducted in the following sequences in the second iterative step of problem solution: 
– the Lagrange integration time step is determined, 
– a particle is launched on the basis of its initial and boundary conditions, 
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– particle characteristics are determined for each new position of the particle, and 
– interphase terms are determined. 

Determination of the Lagrange integration time step, ΔtL 

The Lagrange integration time step is determined from the expression: 

 0 1 2 3max[ , min( , , )]Lt t t t t∆ =  (16) 

where t0 is the minimal time step (usually this time step is not shorter than 10–7 seconds),  
t1 – the time step obtained when the minimal time of a particle passing through a numerical 
cell is divided by the minimal number of Lagrange steps (usually this number is not greater 
than 10), t2 – the impulse relaxation time, and t3 – the maximal time step. 

Particles launching 

After determining the Lagrange time step, ΔtL, the particles are launched by integrat-
ing the particle trajectories eq. (12). The integral of this equation is: 

 0 0
p p p
n

Lx x U t= + ∆  (17) 

where n is the value of the positional particle vector at the end of the time step, and 0 – the 
value of the positional particle vector at the beginning of the time step ΔtL. The same symbols 
relate to the particle velocity. At the integration start, the values marked with 0 represent the 
initial and boundary conditions. 

Determination of particle characteristics 

The characteristics of solid particles are determined by solving the particle momen-
tum eq. (13), which can be written in the general form as: 

 d
d
X A BX
t
= −



   (18) 

where X  is the respective current particle variable, while A and B are the constants. 
As far as the particle momentum is concerned, which is the only variable in this 

case, momentum eq. (13) can be written in the following form: 

 p p p
p

p p p

d 1
d
U U

bg P U
t m mρ

ℜ ℜ
= + − ∇ −

 

  (19) 

from which the constants A and B can be defined p p p p p( ) 1/ , / .A U m bg P B mρ= ℜ + − ∇ =ℜ  

Determination of interphase terms 

The fundamental problem in the analysis of the two-phase gas-solid turbulent flow is 
the treatment of the mutual exchange of momentum, energy and mass between the phases due 
to the chaotic movement of the particles shifting from one vortex to another. When modelling 
a two-phase turbulent flow, the presence of the solid phase, i. e. the transported material parti-
cles, causes the appearance of additional sources in momentum, energy and mass conserva-
tion in the gas phase equations. The basic principle of determination of interphase interaction 
terms is grounded in the division of the flow field into numerical cells and the consideration 
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of each cell as a control volume [4]. Thus the change in momentum during the passing 
through the observed numerical cell is taken as the source or sink of the momentum in the gas 
phase, i. e. the transporting air. 

The mathematical model of the gas phase is established on the basis of the models de-
veloped for monophasic flow with a correction due to the presence of solid particles. Namely, 
when a particle passes through the entire numerical cell, it experiences an interphase interaction 
of the change in momentum, energy or mass. The interphase interaction terms describe a change 
in the momentum of the transported material particles, i. e. a change in momentum of the gas 
phase due to the presence of solid particles in it. These interphase interaction terms have to be 
added to the momentum equation of the gas phase, thus they need to be determined in an appro-
priate manner. For example, if a particle moves at a velocity higher than that of the environ-
ment, i. e. the gas phase, the particle will slow down due to the interaction of the phases, i. e. the 
velocity of the particle will drop while the velocity of the gas phase in the immediate surround-
ings will increase. The interphase interaction term in eq. (5) represents the force of resistance to 
the movement of a solid particle in the air flow, i. e. the force of resistance to the flow of the 
fluid around the solid particle. This force is of the same magnitude and direction as the force of 
resistance to relative movement of solid particles, i. e. the force of resistance reaction that caus-
es the movement of particles, but of opposite sign. Here, as previously mentioned above, it is 
assumed that the forces which are perpendicular to the direction of the movement of particles 
are in equilibrium, and that their influence on particles is neglected. This means that the mutual 
influence between the phases is, in fact, given by the magnitude of axial forces, so that the in-
terphase interaction term is determined by solving the particle movement equation: 

 p
p

d
d

IF
Ui

U
m S

t
=



 (20) 

The integration of partial differential eq. (20) is performed for each numerical cell, 
i. e. control volume, bearing in mind the Lagrange time step so as not to skip any cells, that is, 
to carry out the integration for every numerical cell and the entire flow space along the chan-
nel. Interphase interaction terms appear in the momentum eq. (5) of the gas phase, they are 
equal to the change in the particle momentum for each numerical cell, and they describe the 
change in momentum of the gas phase due to the presence of solid particles. They are deter-
mined from the expression: 

 0 0 0 3 3
p p, p p p, p

π ( ) ( )
6i

IF n n n
U i iS U D U Dη ρ ρ = − ∑    (21) 

Numerical model 

A numerical model was formed for a developed two-phase gas-solid turbulent flow 
in a horizontal straight channel with a square cross-section, and with the side dimension of 
200 mm. In order to form fully developed turbulent flow with stable velocities, and to induce 
and emphasize the secondary flow, known as Prandtl’s secondary flow of the second kind, an 
80 Dh, i. e. 18 m long channel was taken. 

The selected numerical grid along the cross-section of the channel is non-uniform, 
which accounts for different sizes of numerical cells. There are fewer numerical cells in the 
central part of the channel and they have greater surfaces, while there are more of them closer 
to the walls and the vertices of the channel and their surface is smaller. The total mass flow of 
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the transported material (particles) set through the cross-section of the channel at the entrance, 
is established as partial flow in the numerical cells proportional to the cell surface. 

Since the numerical cells differ in their surfaces, i. e. the cells close to the channel 
walls and vertices are smaller, the mass flows of the 
transported material (particles) are also smaller in 
them, contrary to the numerical cells situated in the 
central part of the channel that are larger in themselves 
and that have larger mass flows. Thus, if one observes 
the entire cross-section of the channel, one gets a 
steady distribution of transported solid particles along 
the entire cross-section. During the simulations, the 
fineness of the numerical grid was examined, and the 
paper presents the results from the highest resolution 
numerical grid above which the fineness of the grid 
did not affect the obtained results: NX = 40, NY = 40, 
and NZ = 180, fig. 1. 

As already mentioned, the mechanisms which 
lead to the occurrence of secondary flows in turbulent 
flow are different. The influence of Prandtl’s second-
ary flow of the second kind, which is induced in 
straight channels with a non-circular cross-section during a developed turbulent flow, can not 
be neglected, regardless of its size, particularly in the cases of the two-phase gas-solid flow, 
where the transported material solid particles are of a relatively small diameter, i. e. there is a 
two-phase flow with a high Stokes number. To notice the effects of the secondary flow of the 
second kind in the cross-section of the observed channel, the study includes three simulation 
cases of the two-phase gas-solid turbulent flow, where the transporting fluid was always air 
while different particles were used as the transported material, namely, quartz, ash, and flour. 

Firstly, solid quartz particles of 0.5 mm in diameter and 2500 kg/m3 in density were 
considered as the transported material. Secondly, ash, with the particle diameter of 0.14 mm 
and density of 1800 kg/m3, and flour, with the particle diameter of 0.20 mm and density of 
1410 kg/m3, were used as the other transported materials. 

The transported particles were assigned an initial velocity at the entrance to the 
channel, so as to initiate their movement, and this velocity was chosen as equal to the suspen-
sion velocity of the particles which amounted to 2.8 m/s [5]. To form the mathematical model 
of the ash and flour particle transport, the same conditions were adopted as in the case of 
quartz particles: the particle entrance velocity of 2.8 m/s (the recommended value of the sus-
pension velocity of ash particles was 0.36 m/s and for flour particles 1.2-1.5 m/s). 

Upon the formation of the mathematical model, the transported particles were equally 
distributed at the channel entrance along the entire cross-section of the channel. To record the 
behaviour of the transported material, six groups of particles were selected and distributed along 
the x- and y-axis. Apart from defining the initial velocity of the transported particles of quartz, it 
was necessary to define the flow velocity of the transporting air at the entrance, which ranged 
from 12-22 m/s [6], thus the paper adopted the value of 22 m/s, while air pressure was taken as 
1 bar with the density of 1.2 kg/m3. The same values of pressure, density, and flow velocity of 
the transporting air at the entrance were adopted for the transport of ash and flour particles as 
well (the recommended value of the transporting air velocity for the transport of ash particles 
was 12-20 m/s and for the transport of flour particles approx. 20 m/s). 

 
Figure 1. Numerical grid for the channel 
cross-section 
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To perform a comparative analysis of monophasic and two-phase flows in the de-
fined real problem, the simulation of monophasic flow was conducted under the same bound-
ary conditions for the gas phase as in the simulations of two-phase flow for various types of 
transport of solid particles. Furthermore, the same fineness of the numerical grid was retained. 
The dominant parameter which influences the secondary flow of the second kind is the turbu-
lent tangential stress in the cross-sectional plane of the channel, thus it was chosen as the pa-
rameter for comparing the effects of two-phase flow on the observed phenomenon. 

Results and discussion 

The fundamental problem in the consideration of the two-phase gas-solid turbulent 
flow is based on the change in momentum, energy and mass of the transported material while 
passing through a certain segment of the flow field. The change in momentum during the 
passing through an observed numerical control volume is taken as the source or sink of mo-
mentum of the continuous – gas phase. In such a case, the mathematical model of the gas 
phase is established for monophasic flow with the correction due to the presence of solid par-
ticles. In the first iterative step only the air current is observed, and conservation equations are 
solved for it as if there were no dispersed phase. The presence of the dispersed phase causes 
the appearance of additional sources of the momentum in the gas phase equations through ad-
ditional terms which describe a change in momentum of solid particles, i. e. a change in mo-
mentum of the gas phase due to the presence of particles. This is why in the second iterative 
step the obtained flow field of the gas phase is stopped in time, i. e. frozen, and the movement 
of solid particles is observed within it. This flow field of the gas phase is then used to deter-
mine the trajectories of solid particles. Based on thus obtained trajectories, the interphase 
terms are determined for the interaction between the transporting air and the transported mate-
rial – particles. So as to include the interphase interaction terms in the analysis, i. e. the influ-
ence of one phase on the other, the third iterative step freezes the obtained trajectories of 
transported particles from the previous step and solves the flow field of the gas phase again. 
The solution of the flow field of the gas phase is now performed by taking into consideration 
the influence of transported particles through the previously obtained interphase interaction 
terms. If the solution convergence of 0.1% is achieved, the problem is solved, otherwise the 
iteration procedure continues simultaneously. 

During the simulation of the two-phase turbulent flow, it is assumed that the flow of 
the transporting gas – air is isothermal, steady and 3-D, and the mass and temperature of solid 
particles does not change during the transport process, i. e. neglecting the influence of colli-
sions between the particles as well as their colliding with the channel walls. The solution of 
the mathematical model assumes that the temperature of the channel walls does not change 
along the channel and that it differs from the temperature of the environment. 

The formation of the secondary flow of the second kind in a straight channel with a 
non-circular cross-section during a developed turbulent flow occurs due to the existence of the 
gradients of Reynolds stresses. The turbulent terms A4 and A5, which contain Reynolds stresses: 

2 2 3 3 2 3, ,  and ,u u u u u u have a dominant role and are of opposite sign in the vorticity eq. (2), 
whose direction coincides with the basic flow direction. These terms express the influence of 
turbulent stresses on the production or destruction of turbulent vorticity. Separately, the turbu-
lent terms can be much larger than the convective term A1, in the equation for turbulent vorticity 
whose direction is perpendicular to the cross-section of the channel. The generation of turbulent 
normal and shear stresses depends on the size of the velocity gradients of secondary and prima-
ry flow. The velocity gradients of secondary flow have a greater influence on the generation of 
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turbulent shear stresses 2 3u u  than the primary velocity gradients in most of the cross-section 
during a developed turbulent flow. The difference between the turbulent terms is almost of the 
same order as the convective term itself, and it is precisely this difference between the relatively 
large turbulent terms that is the main cause secondary flow formation of the second kind in the 
cross-section of the channel. Secondary flow launches the small momentum fluid towards the 
centre of the channel and produces increased shear stresses towards the channel vertices.  

It can be said that the vorticity is higher if the production of turbulent stresses is 
greater, thus it can be concluded that it is exactly that difference between the relatively large 
turbulent terms A4 and A5 that is the mechanism which generates secondary flow. The larger 
the difference, the more intensive and pronounced the secondary flow. The presence of parti-
cles in the gas phase leads to the increase in the difference between the turbulent terms which 
contain turbulent stresses, thus to a more intensive secondary flow. By observing figs. 2-4 of 
turbulent stresses, it can be seen that a greater difference between the normal turbulent stress-
es 3 3u u  and 2 2u u  and the shear turbulent stress 2 3u u  leads to a more pronounced secondary 
flow. By comparing monophasic and two-phase flow, figs. 2-4, it can be concluded that sec-
ondary flow is more intensive and pronounced in the case of two-phase flow, which means 
that the presence of solid particles in the transporting air current promotes the generation of 
secondary flow. 

   

   
Figure 2. Distribution of turbulent stresses 2 3u u  in the cross-section of the channel, in the middle 
(for color image see journal website) 

The movement of solid particles of the transported material in the transporting air 
flow is such that an increase in velocity leads to a decrease in their acceleration along the 
channel. The acceleration of particles decreases almost to zero and their velocity becomes 
uniform. As the turbulent flow along the observed channel develops, the profile of particle ve-
locity gets deformed in such a manner that particle velocity first goes through a linear increase  
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Figure 3. Distribution of turbulent stresses 22u u in the cross-section of the channel, in the middle 
(for color image see journal website) 

   

   
Figure 4. Distribution of turbulent stresses 3 3u u in the cross-section of the channel, in the middle 
(for color image see journal website) 
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in a short part of the path, with that path being 
longer for the particles which are closer to the 
channel walls in relation to the particles closer 
to the centre of the channel, fig. 5. By develop-
ing a turbulent flow, velocity profiles of trans-
ported particles stabilize, acceleration almost 
ceases, and solid particles move uniformly, fig. 
5, with velocities which are lower than the ve-
locity of the surrounding air. The path along 
which the velocity of the transported material 
particles increases is longer for the particles 
which are closer to the walls, both due to the 
viscous forces which act on them and the influ-
ence of the channel walls themselves, as well as 
the velocity of the transporting air. 

Viscous zones, caused by secondary flow, 
immediately next to the solid wall, influence 
the turbulent interactions via their damping ac-
tion. Here, it is characteristic that the velocity 
fluctuations perpendicular to the walls are 
damped, while the velocity fluctuations parallel 
to the walls are intensified, but also affect the 
turbulent flow structure itself. With the begin-
ning of the development of turbulent flow, the 
velocity of the transported material particles in-
creases. By establishing a fully developed tur-
bulent flow, the velocity profile stabilizes, the 
velocity becomes approximately constant, 
which means that the acceleration of solid par-
ticles ceases and the transported material parti-
cles move almost uniformly, fig. 5, tending to 
the velocity of the transporting air, which they 
never reach. 

Conclusion 

The main characteristic of fluid flow, that is encountered in engineering and tech-
nical devices as well as natural watercourses and atmospheric flows, is the turbulent momen-
tum, heat and mass transfer. During a developed turbulent flow in straight channels secondary 
flow is induced in the cross-sectional plane, the so-called Prandtl’s secondary flow of the sec-
ond kind. The paper employed a full Reynolds turbulence stress model to solve a turbulent 
two-phase flow in a straight horizontal channel. The performed numerical simulations yielded 
a change in all of the components of turbulent stresses, while the paper only presents the 
components which affect the formation of the secondary flow as well as the distribution of ve-
locities of the solid particles transported along the channel. The contribution of the paper lies 
in the acquisition of a reliable and modern engineering tool on the basis of the numerical cal-
culation approach to the complex phenomena of pneumatic transport of granular materials in 
channels with a non-circular cross-section. 

 

 

 
Figure 5. Change in the particle velocity along 
the channel; (a) flour, (b) quartz, (c) ash 
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Nomenclature 
A – cross-section surface, [m2]  
a – heat diffusion coefficient, (= λ/ρcp) 
b – buoyancy force coefficient 
cp – specific heat, [Jkg–1K–1] 
D – solid particles diameter, [m] 
g – gravity acceleration, [ms–2] 
k – kinetic turbulence energy, [m2s–2] 
m – particle mass, [kg] 
P – averaged pressure, [Nm–2] 
P  – current pressure, [Nm–2] 
∇P – continuous phase pressure gradient 
Re – Reynolds number 
S – source term 
T – averaged temperature, [K] 
t – time step, [s] 
U – averaged velocity, [ms–1] 
U  – current velocity vector, [ms–1] 

i ju u  – components of turbulent stresses 
V – particle volume, [m3] 

Greek symbols 

Г – transport, diffusion parameter coefficient 
ε – dissipations of turbulent kinetic energy, [m2s–3] 
η – flow of number of particles per one cell, [s–1] 

juθ  – turbulent temperature flux, [kgKm–2s–1] 
λ – heat transfer coefficient, [Wm–1K–1] 
ν – kinematic viscosity, [m2s–1] 
ρ – density, [kgm–3] 
Φ – gas phase universal parameter 
Ω – vorticity, [s–1] 
Subscripts 

i, j, k – vector component 
n – end of time step 
p – particle 
x, y, z  

 – position vector 
0 – beginning of time step 
Superscripts 

IF – interphase term of gas and solid phase  
interaction 
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