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In this paper, the steady flow and heat transfer of an incompressible electrically 
conducting micropolar fluid through a parallel plate channel is investigated. The 
upper and lower plates have been kept at the two constant different temperatures 
and the plates are electrically insulated. Applied magnetic field is perpendicular 
to the flow, while the Reynolds number is significantly lower than one i. e. con-
sidered problem is in induction-less approximation. The general equations that 
describe the discussed problem under the adopted assumptions are reduced to 
ordinary differential equations and three closed-form solutions are obtained. The 
velocity, micro-rotation and temperature fields in function of Hartmann number, 
the coupling parameter and the spin-gradient viscosity parameter are graphically 
shown and discussed. 
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Introduction 

Since the last century, many researchers have been interested in MHD, due to its 
important applications in different scientific and technology fields. The outer magnetic and 
electric field have found application in power plants, flow measurement, nuclear fusion reac-
tor, cooling blankets, accelerators, MHD pumps, etc. 

The requirements of modern technology have stimulated the interest in fluid flow 
studies, which involve the interaction of several phenomena. One of these phenomena is cer-
tainly viscous flow of electrically conducting micropolar fluid in the presence of a magnetic 
field. The theory of thermo-micropolar fluids has been developed by Eringen [1], taking into 
account the effect of micro-elements of fluids on both the kinematics and conduction of heat. 
The concept of micropolar fluid is introduced in an attempt to explain the behavior of a cer-
tain fluid containing polymeric additives and naturally occurring fluids such as the phenome-
non of the flow of colloidal fluids, real fluid with suspensions, liquid crystals and animal 
blood, etc. 

The flow and heat transfer of a viscous incompressible electrically conducting fluid 
between two infinite parallel insulating plates has been studied by many researchers [2-4] due 
to its important applications in the further development of MHD technology. The MHD de-
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vices for liquid metals attracted the attention of metallurgist [5]. It was shown that the effect 
of magnetic field could be very helpful in modernization of technological processes. The in-
creasing interest in the study of MHD phenomena is also related to the development of fusion 
reactors where plasma is confined by a strong magnetic field [6]. Many exciting innovations 
were put forth in the areas of MHD propulsion [7], remote energy deposition for drag reduc-
tion [8], MHD control of flow and heat transfer in the boundary layer [9, 10]. 

All the cited studies are limited to classical Newtonian fluids. There are many fluids 
which are important from the industrial point of view, and display non-Newtonian behavior. 
Due to complexity of such fluids, several models have been proposed but the micropolar 
model is the most prominent one. 

Eringen [1] initiated the concept of micropolar fluids to characterize the suspensions 
of neutrally buoyant rigid particles in a viscous fluid. The micropolar fluids exhibit micro-
rostational and microintertial effects and support body couple and couple stresses. It may be 
noted that micropolar fluids take care of the micro-rotation of fluid particles by means of an 
independent kinematic vector called micro-rotation vector. 

According to the theory of micropolar fluids proposed by Eringen [1] it is possible 
to recover the inadequacy of Navier-Stokes theory to describe the correct behavior of some 
types of fluids with microstructure such as animal blood, muddy water, colloidal fluids, lubri-
cants and chemical suspensions. In the mathematical theory of micropolar fluids there is, in 
general, six degrees of freedom, three for translation and three for micro-rotation of micro-
elements. Extensive reviews of the theory and applications can be found in the review articles 
[11, 12] and in the recent books [13, 14]. 

The research interest in the MHD flows of micropolar fluids has increased substan-
tially over the past decades due to the occurrence of these fluids in industrial and magneto-
biological processes. These flows take into account the effect arising from the local structure 
and micro-motions of the fluid elements. A comprehensive review of the subject and applica-
tions of micropolar fluid mechanics was given by Chamkha et al. [15] and Bachok et al. [16]. 

The MHD heat transfer of micropolar fluid can be divided in two parts. One con-
tains problems in which the heating is an incidental byproduct of electromagnetic fields as in 
MHD generators etc., and the second consists of problems in which the primary use of elec-
tromagnetic fields is to control the heat transfer, Toshivo et al. [17]. Heat transfer in micropo-
lar fluid flow in the presence of magnetic field has gained considerable attention in recent 
years because of its various applications in contemporary technology. These applications in-
clude liquid crystals [18], blood flow in lungs or in arteries [19], flow and thermal control of 
polymeric processing [20]. 

Basic ideas and techniques for both steady and unsteady flow problems of Newtoni-
an and non-Newtonian fluids are given by Ashrat et al. [21]. The basic equations governing 
the flow of couple stress fluids are non-linear in nature and even of higher order than the Na-
vier-Stokes equations. Thus an exact solution of these equations is not easy to find. Different 
numerical, perturbation techniques and a reasonable simplification are commonly used for ob-
taining solutions of these equations [22, 23]. 

Keeping in view the wide area of practical importance of micropolar fluid flow and 
heat transfer as previously mentioned, the objective of the present study is to investigate the 
MHD flow and heat transfer characteristics of a viscous electrically conducting incompressi-
ble micropolar fluid in a parallel plate channel. Viscous dissipation and Joule heating effects 
have also been taken into account. The effects of the governing parameters on the flow and 
heat transfer aspects of the problem are discussed. 
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Mathematical model 

The problem of laminar MHD flow and heat transfer of an incompressible electrical-
ly conducting micropolar fluid between parallel plates is considered. The MHD channel flow 
analysis is usually performed assuming the fluid constant electrical conductivity and treating 
the problem as an 1-D one: with these two main assumptions, the governing equations are 
considerably simplified and they can be solved analytically. 

The physical model shown in fig. 1, consists of two 
infinite parallel plates extending in the x- and z-direction. 
Fully developed flow takes place between parallel plates 
that are at a distance h, as shown in fig. 1. Electrically 
conductive fluid flows thlrough the channel due to the 
constant pressure gradient and magnetic field is applied 
perpendicular to the flow direction. A uniform magnetic 
field of the strength B is applied in the y-direction. The 
upper and lower plates have been kept at the two constant 
temperatures T1 and T2, respectively. The fluid velocity 
vector v and magnetic field induction vector B



are: 

 v iu=


  (1) 

 B jB=




 (2) 

Described laminar MHD flow and heat transfer is mathematically presented with 
following equations: 
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The no-slip conditions require that the fluid velocities are equal to the plate’s veloci-
ties, boundary conditions on temperature are isothermal conditions and there is no micro-
rotation at the plates. The fluid and thermal boundary conditions for this problem are repre-
sented by equations: 

 
* * * *

2
* * * *

1

0, 0, for 0,

0, 0, for

u T T y

u T T y h

ω

ω

= = = =

= = = =
 (6) 

In previous general equations and boundary conditions, used symbols are common 
for the theory of MHD flows. 

Now the following transformations have been used to transform previous equations 
to non-dimensional form: 

 
Figure 1. Physical model and  
co-ordinate system 
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Equations (3)-(5) get the following form: 
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The boundary dimensionless conditions for previous equations are: 
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 (11) 

After basic mathematical transformations from eqs. (8) and (9), the equation for ve-
locity is: 

 ” 0ivu au bu d− + − =  (12) 
where 
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The solution of eq. (12) has three possible cases, and there are three corresponding 
solutions for temperature and micro rotation, which are given with the following equations. 

For the first case solutions are: 

 1 1 2 2 3 3 4 4exp( ) exp( ) exp( ) exp( ) du C y C y C y C y
b

d d d d= + + + +  (14) 
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For the second case solutions are: 
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For the third case solutions are: 
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where the constants from eqs. (14)-(22) are given in the Appendix. 

Results and discussion 

The previous section defined the mathematical model for the steady flow and heat 
transfer of an incompressible electrically conducting micropolar fluid between two infinite 
horizontal parallel plates under a constant pressure gradient and applied magnetic field. Ob-
tained solutions for the velocity, micro-rotation, temperature fields and shear stress in func-
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tion of Hartmann number, the coupling parameter and the spin-gradient viscosity parameter 
are presented graphically. 

Even though all the effects are present simultaneously, the motion may be assumed 
to be affected by viscous action, which is measured by μ, the effect of couple stresses, meas-
ured by γ, and the direct coupling of the microstructure to the velocity field, measured by λ. 

Figures 2 to 4 show the effect of the spin-gradient viscosity parameter on the distri-
bution of velocity, micro-rotation and temperature fields. 

 
Figure 2. Velocity profiles for different values of 
the spin-gradient viscosity parameter 

 
Figure 3. Micro-rotation in function of  
the spin-gradient viscosity parameter 

Figure 2 shows the effect of the spin-gradient viscosity parameter on velocity, which 
predicts that the velocity increases as the spin-gradient viscosity parameter decrease. When 
the viscous effects are much larger than the couple stress effects, ratio γ/μ is small, becoming 
zero when γ = 0, which is equivalent to the case of MHD flow in the channel.  

This fact leads to the conclusion that the increase of gyro-viscosity γ reduces the 
flow compared to the viscous fluid case. 

Micro-rotation in function of the spin-gradient viscosity parameter is shown in  
fig. 3. Increasing of the spin-gradient viscosity parameter causes a decrease in absolute values 
of micro-rotation. 

Figure 4 show the effect of the spin-gradient viscosity parameter on dimensionless 
temperature field. 

Increasing of the spin-gradient viscosity parameter causes a decrease of dimension-
less temperature over the entire width of the channel. Increase of the spin gradient viscosity 
reduces the amount of energy transformed in the fluid. As gyro-viscosity increases, the domi-
nant heat transfer mechanism is conduction. 

The effect of Hartmann number on the velocity and micro rotation is shown in figs. 
5 and 6. It can be seen from those figures that the velocity, as it is expected, decreases for 
large values of Hartmann number. This happens because of the imposing of a magnetic field 
normal to the flow direction, which creates a Lorentz force opposite to the flow direction. 
Similarly, the micro-rotation decreases with the increase of Hartman number, i. e. the magnet-
ic field reduces the expected behavior of micropolar fluids. 

For lower values of Hartmann number, viscous dissipation increases the tempera-
ture while for increase of magnetic field intensity only Joule heating effect increases the 
temperature, as shown in fig. 7. 
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Figure 4. Dimensionless temperature in function of 
the spin-gradient viscosity parameter 

 
Figure 5. Velocity profiles for different values of 
Hartmann number 

 
Figure 6. Micro-rotation for different values of 
Hartmann number 

 
Figure 7. Dimensionless temperature as a 
function of Hartmann number 

Figure 8 shows the effect of the coupling parameter on velocity. From figs. 8 and 9 
it can be observed that the increase in coupling parameter K decreases the velocity but in-
creases the micro-rotation, which means, as expected, that the resistance of fluid increases 
with the increase of K. In the limit K → 0 results correspond to the case viscous fluid. 

The micro-rotation component, ω, increases near the plates with increasing K, show-
ing a reverse rotation near boundaries. An effect of coupling of the microstructure to the ve-
locity field is more pronounced near the domain boundaries.  

Figure 10 shows the influence of the coupling parameter on the dimensionless tem-
perature. Increasing of the coupling parameter causes a decrease of dimensionless temperature 
over the entire height of the channel. 

Figures 11 to 13 presents the influence of Hartmann number, coupling parameter 
and spin gradient viscosity parameter on shear stress which is in case of micropolar fluid de-
fined in following way: ( )(d /d ) .u uτ µ λ λω= + +  

Increase of Hartmann number decreases the shear stress while coupling parameter 
increases it. In the case of spin gradient viscosity there is no significant change of shear stress, 
the increase of shear stress with increase of spin viscosity of micropolar fluid is nearly  
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Figure 8. Velocity profiles for different values of 
the coupling parameter 

 
Figure 9. Micro-rotation for different values of 
the coupling parameter 

 
Figure 10. Dimensionless temperature as a  
function of the coupling parameter 

 
Figure 11. Shear stress as a function of 
Hartmann number 

 
Figure 12. Shear stress as a function of  
the coupling parameter 

 
Figure 13. Shear stress as a function of the  
spin-gradient viscosity parameter 

negligible. The influence of the vortex viscosity is significantly higher than the spin gradient 
viscosity, and this effect is particularly pronounced near the walls.  
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Conclusion 

In this paper, the steady flow and heat transfer of an incompressible electrically con-
ducting micropolar fluid through a parallel plate channel is investigated. The upper and lower 
plates have been kept at the two constant different temperatures and the plates are electrically in-
sulated. Applied magnetic field is perpendicular to the flow, while the Reynolds number is sig-
nificantly lower than one, i. e. considered problem is in induction-less approximation. The gen-
eral equations that describe the discussed problem under the adopted assumptions are reduced to 
ordinary differential equations and closed-form solutions are obtained. Effects of Hartmann 
number, the coupling parameter and the spin-gradient viscosity parameter on the heat and mass 
transfer have been analyzed. The influences of each of the governing parameters on dimension-
less velocity, dimensionless temperature and micro-rotation are discussed by means of graphs. 

Acknowledgment 

This paper is supported by the Serbian Ministry of Education, Science and Techno-
logical development (Project No. TR 35016; Research of MHD flow in the channels, around 
the bodies and application in the development of the MHD pump).  

Appendix 

For the first case, eqs. (14)-(16), constants are: 
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For the second case, eqs. (17)-(19), constants are: 
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2
10 52 Ha ;d C

b
Ω =   2

12 72 Ha ;d C
b

Ω =     2
13 82 Ha ;d C

b
Ω =     

2
2

14 2 Ha ;d
b

Ω =  

31 2
15 2 3

1 1 1
;

2 4 4ξ ξξ
ΩΩ Ω

Ω = − +    32
16 2

1 1
;

2 2ξ ξ
ΩΩ

Ω = −    3
17

1
;

2ξ
Ω

Ω =    5 64
18 2 3

2 2 2
;

2 4 4ξ ξξ
Ω ΩΩ

Ω = − +

5 6
19 2

2 2
;

2 2ξ ξ
Ω Ω

Ω = −    6
20

2
;

2ξ
Ω

Ω =    * 10 11
21 2

1 1
;

ξ ξ
Ω Ω

Ω = −    * 11
22

1
;

ξ
Ω

Ω =    * 1312
23 2

2 2
;

ξ ξ
ΩΩ

Ω = −   

* 13
24

2
;

ξ
Ω

Ω = 15 16 17
28 2 3

1 1 1
;

2 4 4ξ ξξ
Ω Ω Ω

Ω = − +    16 17
29 2

1 1
;

2 2ξ ξ
Ω Ω

Ω = −    17
30

1
;

2ξ
Ω

Ω =    

18 19 20
31 2 3

2 2 2
;

2 4 4ξ ξξ
Ω Ω Ω

Ω = − +    19 20
32 2

2 2
;

2 2ξ ξ
Ω Ω

Ω = − 20
33

2
;

2ξ
Ω

Ω =  
* *

* 21 22
34 2

1 1
;

ξ ξ
Ω Ω

Ω = −       

*
* 22

35
1

;
ξ
Ω

Ω =    
* *

* 23 24
36 2

2 2
;

ξ ξ
Ω Ω

Ω = −    
*

* 24
37

2
;

ξ
Ω

Ω =  

* 7 14
38 ;

2
Ω +Ω

Ω =    * 8
39 ;

6
Ω

Ω =    * 9
40 .

12
Ω

Ω =  

For the third case, eqs. (20)-(22), constants are: 

9 11 ;dC C
b

 = − + 
 

   *
10 9 11 9 12;C Q C Q C= + −

* *
16 15 17 14

12 * *
16 14 16 14

;Q Q Q QC
Q Q Q Q

−
=

−  

*
*

1
1 ;B D
E A
 

ℑ = −  
 

   2
1 ;

EA
ℑ =    1

1 cos ;
2

R θ
α =    1

1 sin ;
2

R θ
β =

2 2
1 2 1 2 1 1( 3 ) ;P α β α= ℑ − ℑ + ℑ

 
2 2

1 2 1 2 1 1( 3 ) ;Q α ββ = ℑ − ℑ + ℑ    1 1 1cos exp ;Q β α=    2 1 1sin exp ;Q β α=  

3 1 1cos exp( );Q β α= −    4 1 1sin exp( );Q β α= −
 

2 2
1 1 2 1 2 1 ;P α β= ℑ − ℑ + ℑ    2 2 1 12 ;P α β= ℑ    4 2 1 1 1 1( sin cos ) exp( );P P Pββ  α= +  

6 1 1 2 1 1( sin cos ) exp( );P P Pββ  α= + −    5 3 1 4 1;Q P Pα β= +  

6 4 1 3 1;Q P Pα β= − 8 5 1 6 1;Q P Pβ α= −  
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9 ;P dQ
Q b

=    *
9

2 ;PQ
Q

=    10 3 1;Q Q Q= −    ( )11 11 ;dQ Q
b

= −
 

12 6 7 ;Q Q Q= +    13 6 ;dQ Q
b

=    14 4 2;Q Q Q= −    * *
14 2 9 10;Q Q Q Q= +    15 11 2 9;Q Q Q Q= +  

16 8 5;Q Q Q= −    * *
16 5 9 12;Q Q Q Q= −    17 5 9 13;Q Q Q Q= −

 
*

3 1 1 10 1 9 2 1 10 1 9( ) ( );P P C C P C Cα ββ  α= − + +    *
4 1 1 10 1 9 2 1 10 1 9( ) ( );P P C C P C Cβ α α β= + − −  

*
5 1 1 12 1 11 2 1 12 1 11[ ( ) ( )];P P C C P C Cα ββ  α= − + + − *

6 1 1 12 1 11 2 1 12 1 11( ) ( );P P C C P C Cβ α α β= − − +  

3
1 45 47 1 49 2 46 48 1 50 2

1 1

52 53 1 55 2 54 1 56 2
1

1 1 1 1( ) ( )
2 2 2 2

1 ( ) ( );
2

χχχχ  
α α

χχχχ  
β

   
= Ω + Ω −Ω + Ω − Ω +Ω −   
   

− Ω + Ω −Ω + Ω −Ω

B
 

1
1 2 2

1 1
;α

χ
α β

=
+

   1
2 2 2

1 1
;β

χ
α β

=
+  

3
2 1 47 2 49 1 2 47 1 49 1 1

1 48 2 50 1 2 48 1 50 1 1

45 46 51 52
1 1 1 1

1 1 1 1

53

1 1( )cos(2 ) ( )sin(2 ) exp(2 )
2 2

1 1( )cos(2 ) ( )sin(2 ) exp( 2 )
2 2

exp(2 ) exp) (2 ) sin(2 ) cos(2 )
2 2 2 2

(

c c β c c β α

c c β c c β α

α α ββ
α α ββ

c

 = Ω − Ω + Ω + Ω +  
 + − Ω + Ω + Ω − Ω − +  

Ω Ω Ω Ω
+ + − − − +

+ Ω

B

[ ]

[ ]

1 55 2 1 53 2 55 1 1 1

57
54 1 56 2 1 54 2 56 1 1

)cos( ) ( )sin( ) exp( )

( )cos( ) ( )sin( ) exp( ) ;
2

c β c c β α

c c β c c β α

−Ω + Ω +Ω +

Ω
+ Ω −Ω − Ω +Ω − +

 

3 3 3
1 1 2

1 ;
Pr Ec

H = − −B B    3 3
2 1;H = − B

 

42 1 10 1 9;C Cβ αΩ = +    43 1 12 1 11;C Cβ αΩ = −    44 1 12 1 11;C Cα βΩ = +  

2 2 2 2 2
45 41 42 9 10

1

1 [(1 )( ) Ha ( )];
4

K C C
a

Ω = + Ω +Ω + +

2 2 2 2 2
46 43 44 11 12

1

1 [(1 )( ) Ha ( )];
4

K C C
a

Ω = + Ω +Ω + +  
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2 2 2 2 21
47 42 41 9 102 2

1 1

21
41 42 9 102 2

1 1

1 [(1 )( ) Ha ( )]
4

1 [(1 ) Ha ];
2

K C C

K C C

a
aβ

β
aβ

Ω = + Ω −Ω + − −
+

− + Ω Ω +
+

 

2 2 2 2 21
48 44 43 12 112 2

1 1

21
43 44 11 122 2

1 1

1 [(1 )( ) Ha ( )]
4

1 [(1 ) Ha ];
2

K C C

K C C

a
aβ

β
aβ

Ω = + Ω −Ω + − +
+

+ + Ω Ω −
+

 

[ ]1
49 41 42 9 102 2

1 1

2 2 2 2 21
42 41 9 102 2

1 1

1 (1 )
2

1 (1 )( ) Ha ( ) ;
4

K HaC C

K C C

a
aβ

β
aβ

Ω = + Ω Ω + +
+

 + + Ω −Ω + − +

 

[ ]1
50 43 44 11 122 2

1 1

2 2 2 2 21
43 44 11 122 2

1 1

1 (1 ) Ha
2

1 [(1 )( ) Ha ( )];
4

K C C

K C C

a
aβ

β
aβ

Ω = + Ω Ω − +
+

+ + Ω −Ω + −
+

 

2
51 41 43 42 44 9 12 10 11

1

1 [(1 )( ) Ha ( )];
2

K C C C C
β

Ω = + Ω Ω −Ω Ω + +  

2
52 42 43 41 44 9 11 10 12

1

1 [(1 )( ) Ha ( )];
2

K C C C C
β

Ω = + Ω Ω −Ω Ω + −  

2 2 2 1
53 9 1 10 1 1 12 Ha ( )( ) ;d C C

b
a b a b −Ω = − +    2 2 2 1

54 11 1 12 1 1 12 Ha ( )( ) ;d C C
b

a b a b −Ω = + +  

2 2 2 1
55 9 1 10 1 1 12 Ha ( )( ) ;d C C

b
b aa  b −Ω = + +    2 2 2 1

56 11 1 12 1 1 12 Ha ( )( ) ;d C C
b

b aa  b −Ω = − +  

2
2

57 42 43 41 44 9 11 10 12 2(1 )( ) Ha dK C C C C
b

 
Ω = + Ω Ω −Ω Ω + + +  

 
 

Nomenclature 
B


 – magnetic field vector, [T] 
cp – specific heat capacity, [Jkg−1K−1] 
Ha – Hartmann number, 
h – hHeight of channel, [m] 
k – thermal conductivity of fluid, [WK−1m−1] 
p – pressure, [Pa] 
T – temperature, [K] 
u – fluid velocity, [ms−1] 
x – longitudinal co-ordinate, [m] 
y – transversal co-ordinate, [m] 

Greek symbols 

γ – spin gradient viscosity, [kgms−1] 
Ө – dimensionless temperature, 
λ – vortex viscosity, [kgm−1s−1] 
µ – dynamic viscosity, [kgm−1s−1] 
ν – kinematic viscosity, [m2s−1] 
ρ – density of fluid, [kgm−3] 
ω – micro-rotation vector, [s−1] 
σ – electrical conductivity, [Sm−1] 
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