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In this paper, we suggest the series expansion method for finding the series solu-
tion for the time-fractional diffusion equation involving Caputo fractional deriva-
tive.
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Introduction

The fractional derivatives [1-6] were the potential tools for modelling the complex
behaviors in science and engineering. Mathematical theory of time-fractional diffusion equa-
tion within Caputo fractional derivative:
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was studied in [7], where u is a constant. The Caputo fractional derivative of the continuous
function ¢(X) of fractional order y is defined as [3, 6]:
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where 0 <y <1 and X> a.
The prosperities of the Caputo fractional derivatives of the continuous functions are
given as [3, 6]:
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where the generalized Mittag-Leffler function is defined as [3, 6]:
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The fractional diffusion problems were solved by the different technologies, such as
the Chebyshev pseudospectral method [8], space-time spectral method [9], ractional-order
implicit difference method [10], legendre spectral element method [11], homotopy perturba-
tion method [12], differential transform method [13], similarity variable method [14], and
Laplace series expansion method [15].

The local fractional series expansion method was proposed to solve the diffusion
[16] and Schroedinger [17] equations defined on Cantor sets. Its extended version (fractional
series expansion method) via modified Riemann-Liouville derivative was discussed in [18].
However, the series expansion method for handling the fractional differential equations in-
volving the Caputo fractional derivative have not proposed. The main aim of the paper is to
propose the series expansion method to solve the time-fractional diffusion equation with the
Caputo fractional derivative.

Analysis of the method
In order to introduce the technology, we now give the time-fractional diffusion eq-
uation:
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where L = ufiz/ax2 is a linear operator with respect to X.
We introduce a multi-term separated functions of independent variables t and X,
namely:
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where M;(t) and W; (x) are the continuous functions.
Define the series term:
t'7
M) =v —— 6
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where V; is a coefficient.
Substituting eq. (6) into eq. (5) gives:
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By using v;=1, from eq. (7) we obtain:
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Submitting eq. (8) into eq. (4), we have:
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and
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From egs. (9), (10), and (4), we get:
,Z:F(IH ) Ying(X) = ZF(I ¥i(x) (11
which leads to the recursion:
Y () =(LY)(X (12)
With the help of eq. (12), we obtain the series solution of eq. (4), namely:
)y a—y (13)
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where the convergent condition is:
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The technology is called as the series expansion method.
Solving time-fractional diffusion equation
We consider the following initial value of eq. (1) given as:
Q(x, 0)=¢* (15)

With the help of eqgs. (12) and (14), we can structure the following iterative formula:
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Yo (X)=Q(x, 0)=¢"

which leads to the following terms:

Y (X)=ue*, W, =g, ... ¥, (X)=p'e

Therefore, we obtain the series solution:
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where the generalized Mittag-Leffler function is
defined as [3, 6]:
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. The graph of the solution of eq. (1) is
L oE o s ' shownin fig. (1).
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Figure 1. The solution of eq. (1) based on the In this work, we presented the new method

generalized Mittag-L effler functionfor #=1  for solving the time-fractional diffusion equation
andy =0.85 involving Caputo fractional derivative. The se-

ries expansion terms are based on the genera-
lized Mittag-Leffler function. This technology is accurate and efficient for the fractional diffe-
rential equations.

Nomenclature

X — space co-ordinate, [m] Greek symbols

t —time, [s] V4 — fractional order, [-]
Q(X, t) — concentration, [—]
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