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This manuscript addresses the linear stability analysis of a thermoconvective 
problem in an annular domain. The flow is heated from below, with a linear de-
creasing horizontal temperature profile from the inner to the outer wall. The top 
surface of the domain is open to the atmosphere and the two lateral walls are ad-
iabatic. The effects of several parameters in the flow are evaluated. Three differ-
ent values for the ratio of the momentum diffusivity and thermal diffusivity are 
considered: relatively low Prandtl number (Pr = 1), intermediate Prandtl num-
ber (Pr = 5) and high Prandtl number (ideally Pr  , namely Pr = 50). The 
thermal boundary condition on the top surface is changed by imposing different 
values of the Biot number, Bi. The influence of the aspect ratio (Γ) is assessed for 
through by studying several aspect ratios, Γ. The study has been performed for 
two values of the Bond number (namely Bo = 5 and 50), estimating the perturba-
tion given by thermocapillarity effects on buoyancy effects. Different kinds of 
competing solutions appear on localized zones of the Γ-Bi plane. The boundaries 
of these zones are made up of co-dimension two points. Co-dimension two points 
are found to be function of Bond number, Marangoni number and boundary con-
ditions but to be independent on the Prandtl number.  

Key words:  Marangoni problem, thermocapillary convection, linear stability,  
           buoyancy effects 

Introduction 

It is well known that two different effects are responsible of the thermoconvective 
instabilities in fluid layers: gravity and capillarity forces. The problem in which both effects 
are considered, known as Benard-Marangoni (Bénard-Marangoni, BM) convection, has be-
come a classical problem in fluid mechanics [1]. In the classical BM problem, heat is uni-
formly applied from the bottom wall and the solution becomes unstable for increasing tem-
perature gradients. A more general problem includes the effect of horizontal temperature gra-
dients resulting in new thermoconvective instabilities. Broadly speaking, the problem de-



Hoyas, S., et al.: On the Onset of Instabilities in a Benard-Marangoni Problem … 
S586 THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S585-S596 
 

scribed could be treated as shallow water problem, see [2], but the objective of the current 
study is different since it relies on the analysis of the onset of instabilities. 

The practical importance of the BM problem is nowadays widely recognized since it 
appears in a wide variety of processes such as the flow inside distillation columns, silicon 
crystal growth, film coating processes or the drying process by evaporation [3]. Mercier et al. 
[4] showed that the transition to a stationary convective mode can take place even if an adia-
batic boundary condition is replaced with a Newton’s law. 

These instabilities have been analyzed considering either rectangular domains con-
taining the flow [5, 6], either annular geometries [7], or infinite liquid films [8]. Literature in-
cludes some attempts to develop a theoretical framework for these problems, as presented in 
[9] and references therein, but for the moment it seems that more effort is required to develop 
more powerful numerical and mathematical tools to fully understand the process. 

The following set of dimensionless numbers has been usually employed to charac-
terize the different effects steering the behavior of the flow. 
 Aspect ratio, Γ = δ/d. It is the geometrical parameter that characterizes the domain. 
 Prandtl number, Pr: the ratio of momentum diffusivity (kinematic viscosity) to thermal 

diffusivity. In this manuscript several Pr values are considered, ranging from unity to very 
high values ( ̴ 50): Pr = n/k. 

 Marangoni number, Ma. It accounts for surface tension effects: Ma = gTDTd/rkn. 
 Rayleigh number, Ra. It is representative of the importance of the buoyancy effects:  

Ra = gaDTd3/kn. 
 The two previously defined numbers are combined as the Bond number, Bo, which is the 

ratio of Rayleigh to Marangoni numbers, and thus represents the buoyancy against surface 
tension effects: Bo = Ra/Ma = rgad2/gT. 

 Biot number, Bi, describes the heat transfer at the upper boundary condition between the 
fluid and the atmosphere. Values inside the range [0.2-3.2] have been considered in this 
work. 

In the previous definitions, d and d are the characteristic lengths of the domain that 
will be defined in the following section; gT stands for the rate of change of surface tension 
with temperature; DT is the temperature increment at the lower boundary with respect to the 
ambient temperature; r, k, a, and n are the density, the thermal diffusivity, the thermal ex-
pansion coefficient and the kinematic viscosity of the fluid, respectively, g is the acceleration 
due to gravity. It is convenient to remark that the Bond number used in the present work is the 
thermal Bond number defined as the ratio between thermogravitational effects and 
thermocapillarity effects, which should not be confused with the Bond number commonly 
used in interfacial systems. Since the objective of present study is to analyze phenomena in 
which the buoyancy is dominant, the Bond number range of interest includes values greater 
than one. The importance of heat-related parameters on the development of instabilities was 
analyzed in [10, 11]. More recently, the problem was also studied in annular geometries  
[12, 13] but neglecting the effect of heat transfer from the top surface and considering con-
duction through the lateral walls of the cylinder. Literature includes also works dealing with 
localized heating [14], or containers heated by a non-uniform flux [3]. Hoyas et al. [15] ana-
lyzed the effect of the Biot number on the different bifurcations for the case of Pr = ¥. The 
computational method was validated by comparing the results obtained with the experimental 
results by Garnier et al. [16]. The computational method was modified to deal with Prandtl 
numbers close to unity as shown in [17]. In [18], the authors investigated the existence of co-
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dimension three bifurcations that are the points where co-dimensions two curves intersect on 
the Prandtl-Biot plane, and a new kind of instability was predicted. Those latter works dealt 
with the influence of the Biot number on the flow solutions. Also, the interest in understand-
ing the influence of gravitational effects in thermo-convective phenomena has been rapidly 
growing [19-21]. Very recently the authors have studied the influence of the domain geometry 
on the onset of instabilities [22]. 

Depending on the symmetries of the growing perturbation, several bifurcations may 
appear. Up to six different competing solutions for the different wave numbers have been 
found, namely: 
 stationary rolls (SR), similar to the ones of the basic state [23], 
 hydrothermal wave of the first kind or oblique traveling waves (HWI) [23], 
 longitudinal rolls (LR) [15], 
 standing hydrothermal wave of second class or flower-like wave (HWII) [16, 24], and 
 two new kinds of hydrothermal waves recently reported by Hoyas et al. [22] for low val-

ues of Γ. 
The present work is devoted to analyze the effect of the gravitational and capillarity 

forces of the onset of flow instabilities by means of flow computations. It is worth to keep in 
mind that an adequate understanding of the way in which these instabilities are developed will 
create new possibilities of controlling them. In this work the effect of 3 different Prandtl 
numbers, ranging from a viscosity dominated problem (Pr ≈ ∞, namely equal to 50) to prob-
lems in which the nonlinear flow effects are important (Pr = 1). An intermediate value of the 
Prandtl number representative of the conditions of water at ambient conditions (Pr = 5) is also 
considered. Additionally, the work is performed for two different Bond number conditions: 
Bo = 50 which means negligible thermocapillarity effects and Bo = 5 to evaluate the influence 
of the surface tension in perturbing the computed instabilities. 

Model description and formulation 

The physical domain considered in 
this work consists of a horizontal fluid 
layer of depth d (z coordinate) con-
tained in the annular ring limited by 
two concentric cylinders of radii a and 
a + δ (r coordinate). A sketch of the 
domain is presented in fig. 1. The di-
ameters of the two cylinders are chosen 
so that the bigger is the double of the 
smaller one, i. e., a = δ. The geometry 
of the fluid domain is characterized by 
the aspect ratio, Γ. 

The bottom surface is considered to 
be rigid and is heated with a linearly 
decreasing (along the radius) tempera-
ture distribution with a temperature 
difference TG = 2 K, which is kept 
constant throughout this study. The 
reference temperature used in the definition of the Rayleigh and Marangoni numbers is the 
mean temperature difference between the bottom plate and the atmosphere, ΔT. The top sur-

Figure 1. Sketch of the domain. Lateral walls are 
considered adiabatic; the fluid is heated from below 
and the top surface is open to the atmosphere 
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face is open to the atmosphere and the heat transfer to the atmosphere is expressed in terms of 
the Biot number (as shown in tab. 1). The two lateral walls of the cylinder are considered as 
adiabatic. 

The fluid layer behavior can be 
described by means of the momentum 
and mass balance equations and the 
energy conservation principle. These 
equations are non-dimensionalized us-
ing d as characteristic length, d2/k as 
characteristic time and DT as charac-
teristic temperature difference, as pre-
viously done in [10]. The equations 
become, respectively: 

 =0 u  (1) 

    2= Pr Ra ep        t zu u u u  (2) 

 2=t     u  (3) 

In the equations governing the system u is the velocity field with the three compo-
nents expressed in cylindrical coordinates r, φ and z, i. e., ur, uφ and uz.   is the flow tempera-
ture, and p is the pressure. In these equations the operators are expressed in cylindrical coor-
dinates and ez is the unit vector in the z direction. The Boussinesq approximation is used for 
turbulence modeling as it is usual in this sort of problems [25]. Boundary conditions are simi-
lar to those of references [10, 17]. Non-slip wall condition (velocity equal to zero) is imposed 
on the lateral walls and on the bottom plate. A linearly varying temperature distribution is im-
posed on the bottom plate, while lateral walls are considered as adiabatic. On the top surface, 
the thermo-capillarity forces are modeled through the Marangoni condition [10], whereas the 
heat transfer to the atmosphere is simulated by the Biot condition. Notice that the dimension-
less numbers presented in the previous chapter appear in eqs. (1-3) and in the boundary condi-
tions summarized in tab. 1. 

Numerical method 

The temperature gradient on the bottom surface induces motion on the flow until a 
steady state, commonly known as basic state, is reached. Since the flow is laminar and due to 
the domain’s symmetries, the basic state will be obtained under the assumption of 2D ax-
isymmetric solution, and thus the dependency with φ can be neglected. Equations (1-3) devel-
oped for the cylindrical case then become:  

  1 = 0r r z zr ru u     (4) 

  1
2

Pr = r
r r r z z r r c r

u
u u u u p u

r
         (5) 

Table 1. Boundary conditions 

= 0z  dz =  a,a=r

0=ru  Ma = 0z r ru    0=ru  

0=u  Ma = 0zr u    0=u  

0=zu  0=u z  0=u z  

 r/TT= G   0Bi =z    0=n  
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 1Pr = Rar r z z z z z c zu u u u p u          (6) 

 
= Δr r z z cu u      (7) 

where Dc = r−1¶r(r¶r) + ¶z
2 is the Laplacian operator in cylindrical coordinates, simplified ac-

cording to the previously mentioned symmetries. 
The previous system of equations (4-7) can be solved in different ways, being spec-

tral methods the most widely used [26]. Among the different spectral methods, the collocation 
method [27] is chosen in this work due to its accuracy and simplicity. The procedure is started 
by expanding the fluid variables in a truncated series of orho normal Chebyshev polynomials, 
as: 

     zraz,rX mn
i
nm

M

=m

N

=n

i 
00

 (8) 

where i = 1, ..., 4 and iX  stands for the four different flow variables, i. e., p, ru , zu , and  , 
respectively. )(xj  is the Chebyshev polynomial of the first kind of degree j. The polynomial 
coefficients, i

nma , are now the unknowns of the problem with the superscript indicating the 
corresponding flow variables. The flow variables expanded expressions from eq. (8) are sub-
stituted into eqs. (1)-(3) and in the boundary conditions (tab. 1). The collocation method con-
tinues by evaluating the resultant equations in the Chebyshev-Gauss-Lobatto (CGL) points 
[28]. CGL points are defined as: 

= cos , = 0, 1, ...,  i
i

r i N
N

 
 
 

  

M...,=i,
M

i
cos=zi   1, 0,






   

where N and M correspond to the order of the method in radial and axial direction, respective-
ly. The use of CGL points is especially of interest when dealing with boundary effects [26] 
since the collocation points tend to concentrate near the boundaries. A specially developed 
procedure proposed by Mancho et al. [5], consisting in projecting the equations by the normal 
to the boundaries, is used to impose the boundary condition for the pressure. This procedure 
avoids the problem of the spurious modes as stated by Bernardi and Maday [29]. The pressure 
is determined with respect to an additive constant. 

The non-linearity of the problem is solved by using a Newton-like iterative method, 
taking as first approach either the solution of the linearized problem, neglecting the nonlinear 
part of eqs. (5) and (6), or a previously known basic state “nearby” the new one. Convergence 
is typically obtained in less than 20 iterations as shown in the convergence test performed by 
Hoyas et al. [10]. 

The basic state is stable for low Ra. As Ra is increased (and thus the Ma for a given 
Bo), the basic state becomes unstable and several bifurcations arise. The purpose of this anal-
ysis is to determine the critical Ra and Ma values and the shape of growing instabilities for 
fixed Biot, Prandtl, and Bond numbers. 

The flow stability is analyzed by perturbing the solution for the basic state with per-
turbation fields depending on the three cylindrical coordinates, r, φ, and z. Applying again the 
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axial symmetry of the problem, and thus periodicity along the azimuthal direction, φ, fluid 
magnitudes may be expanded in Fourier modes over φ as: 

 ( , , , ) = ( , ) ( , ) ik t
b pX r z t X r z X r z e     (9) 

where subscripts b and p stand for the basic state and the induced perturbation, respectively; 
and 0k  is the wave number. It is important to remark again that the basic state does not de-
pend on φ. 

The real part of the eigenvalue, l, characterizes the stability. For Re(l) < 0 the solu-
tion is stable since the perturbation tends to dissipate. For Re(l) > 0 the solution is unstable. 
In this latter case, the bifurcation might be stationary (imaginary part of l equal to zero) or 
oscillatory (when the imaginary part of l is non-zero). 

Once the Fourier modes of the flow variables, eq. (9), are substituted into the gen-
eral eqs. (1)-(3) and the BCs from tab. 1, the problem is linearized as shown by [17]. The sys-
tem then becomes:  

    XB=XA   (10) 

Due to the boundary conditions the matrix [B] is singular and thus not all the eigen-
values have a finite value. This issue is solved by using a transformation technique, developed 
by Navarro et al. [30], specifically designed for thermo-convective problems. The largest ei-
genvalue obtained through this transformation corresponds to the largest finite eigenvalue of 
the original problem. The computational code was validated experimentally in [15] and the 
generalization of the code to Pr < 50 was validated in [17], using the same procedure as in 
[10]. 

Results and discussion  

The analysis intends to determine the critical Rayleigh number (Rac) and critical 
Marangoni number (Mac) for different conditions depending on the Biot, Prandtl, and Bond 
numbers and on the domain aspect ratio, Γ. The critical condition is found when the real part 
of the eigenvalue of eq. (10) is equal to 0 and is associated to a critical wave number, k. Solv-
ing the eigenvalue problem also allows obtaining the eigenvectors of the solution that repre-
sents the shape of the unstable modes. 

Critical wave number 

Figure 2 shows the critical wave number for each of the 6 combinations of Prandtl 
and Bond numbers analyzed in this work. The figure reports contour plots of the wave num-
ber for varying Γ and Biot number. Two different color scales are used: one for stationary 
modes going from light blue to yellow for increasing wave number and the other one for os-
cillatory modes going from light blue to dark blue for increasing wave number. Figure 2 
shows the great variation of critical wave numbers and of the type of growing perturbation 
depending on the parameters object of the study. Moving along a constant Bi line for increas-
ing Γ at low aspect ratios the modes are typically found to be steady then for a range of aspect 
ratios the modes are oscillatory and finally at higher aspect ratios the modes become again 
stationary. The wave number is found to increase with the aspect ratio suggesting that the 
characteristic wavelength of the disturbances is positively correlated with the domain depth. 
The precession of the modes along the domain for a limited range of Γ suggests that these as-
pect ratios should enable a better mixing and enhanced heat transfer performances. 



Hoyas, S., et al: On the Onset of Instabilities in a Benard-Marangoni Problem … 
THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S585-S596 S591 
 

Both increasing Pr and Bo, the Γ range which results in oscillatory solutions is re-
duced while the characteristic wavelength is slightly affected. The Prandtl number effect can 
be explained with the increase of damping due to viscous forces, while the Bo effect is related 
to the decrease of thermocapilarity forces at a given Ra. Increasing the Bi for all the other pa-
rameters fixed, results in a small decrease of the wave number and in the possible suppression 
of oscillations due to the decrease of the vertical temperature gradient through the domain. 

Evolution of the critical Rayleigh number 

Figure 3 reports the values of the critical Rayleigh number versus the domain aspect 
ratio Γ at Bi equal to 0.8 for three different cases. Going through fig. 3 from top to bottom, the 
cases are: Pr = 1, Bo = 5 corresponding to the case shown in fig. 2(e), Pr = 1, Bo = 50, corre-
sponding to fig. 2(f), and Pr = 50, Bo = 50, corresponding to fig. 2(b). It is worth to remark 
that the value of the wave number along the curve is not continuous. Hollow circles stand for 
stationary bifurcations, whereas bold ones indicate oscillatory ones. 

Additionally, the size of the marker is related with the value of the wave number, the 
smallest circle represents a value of k = 0 and the largest one a value of k = 24.The wave 
number increases with the aspect ratio of the domain, Γ (as also shown in fig. 1), while the 
critical Rayleigh number decreases. This same tendency was previously found by the authors 
in [22]. Figure 3 also includes representative top r-φ plane isotherms plotted above the curves. 
The temperature field is non-dimensionalized with respect to the maximum Q. Below the line 
the corresponding z-r planes are also reported. Several types of instabilities are found along 
the constant Bi curves. As an example in fig. 3(b), for low aspect ratios,  = 3 − 4, stationary 
rolls (SR) are found, passing through a region of oscillatory Hydrothermal Wave of the first 
kind (HWI), for  = 4 − 6.2, and finally, for large aspect ratios,  = 6.2 − 8, longitudinal rolls 
(LR) appear as a result of the temperature gradient along the bottom wall which provides a 
stronger effect in the inner part of the domain. 

Figure 3(a) reports in the same fashion as in fig. 3(b) the information for the case of 
Pr = 1 and Bo = 5, corresponding to fig. 2(c). For small aspect ratios a flower-like perturba-
tion (as the ones obtained in [22]) appears instead of the stationary rolls of the former case. 
Following the curve, the arising perturbations are the same, passing through a region of oscil-
latory Hydrothermal Wave of the first kind (HWI), and finally for large aspect ratios, Longi-
tudinal Rolls. It has to be remarked from comparison of figs. 3(a) and 3(b) that the critical 
wave number in the regions of HWI and LR is smaller in the former case. This means that the 
critical wave number is increased when the Marangoni number decreases, while the critical 
Rayleigh number follows the opposite tendency. 

Comparing the curves from figs. 3(b) and 3(c) the effect of the Prandtl number can 
be assessed. The increase of the Prandtl number has a remarkable effect on the substantial in-
crease of the critical Rayleigh number at which the modes become unstable due to the in-
crease of viscous effects. The aspect ratio at which the different regimes appear is modified 
for Pr > 1; in fact the region of HWI is delayed (in aspect ratio) and becomes narrower, being 
the transition to LR also anticipated. Moreover, the viscous effects are found to be responsible 
of the arising of a flower-like perturbation for low aspect ratios. 

Co-dimension two points 

As figs. 2 and 3 illustrate, different kind of competing solutions appear on localized 
regions of the Γ-Bi plane. The boundaries of these zones are made up of co-dimension two 
points, where two of the competing  solutions may  appear at the same time.  The evolution of 
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Figure 2. Critical wave number for the different numerical experiments analyzed in this work; the  
results are divided in stationary, Imag(λ) = 0, and oscillatory cases, Imag(λ) ≠ 0; left column cases with 
Bo = 5 and for decreasing values of the Prandtl number and right column cases with Bo = 50  
(for color image see journal website) 
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Figure 3. Evolution of the critical Ra with Γ for Bi = 0.8, and (a) Pr = 1 and Bo = 5, (b) Pr = 1 and 
Bo = 50, (c) Pr = 50 and Bo = 50. Empty circles stand for stationary bifurcations, whereas bold ones 
indicate oscillatory ones; the size of the circle indicates the wave number in a scale from k = 0 (the 
smallest circle) to k = 24 (the largest one) (for color image see journal website)
 
the critical Marangoni number and of the Biot number of all the co-dimension two points 
found in the present work is shown in fig. 4. Notice that all these points are obtained for dif-
ferent values of the aspect ratio Γ. 

Pr = 50 and Bo = 50 

Pr = 1 and Bo = 50 

Pr = 1 and Bo = 5 
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The main result shown in the figure is that most of the co-dimension two points have 
little dependence on the Prandtl number since the points seem to lay along two curves of 
equal Bond number: one for Bo = 5 and the other for Bo = 50. Of course at higher Bond num-
bers the critical Marangoni number is lower and practically constant since the instabilities are 
mostly triggered by the buoyancy effects and a slight increase of the critical Marangoni num-
ber is required to compensate the instabilizing effect of the decrease of the Biot number. 

Some outliers with respect to the Ma-Bi curves are found among the low Bond cases 
for domains with high aspect ratio, where the Biot number is the dominant parameter as seen 
in previous works as [22]. On the other hand for high Bond numbers (Bo = 50), the flow is 
dominated by the thermoconvective phenomena, and the Biot number is not representative 
there. 

Figure 4. Representation of the critical Marangoni number and Biot number of all the co-dimension 
two points found in the present analysis (for color image see journal website) 

Conclusions 

This paper assesses the influence of the gravitational and capillarity forces of the on-
set of flow instabilities in a Bérnard-Marangoni convection problem. Numerical simulations 
have been conducted in an annular domain with a temperature gradient imposed at its lower 
wall. This gradient induces a velocity field in the flow, that evolves until a basic state is 
reached. The analysis is performed for 3 different values of the Prandtl number, ranging from 
a viscosity dominated problem (Pr = 50) to problems in which the nonlinear flow effects are 
important (Pr = 1), and addressing an intermediate problem representative of water at ambient 
conditions (Pr = 5). This work also addresses the influence of the surface tension and of the 
thermocapillarity in perturbing the computed instabilities by analyzing two different values of 
the Bond number (5 and 50). 

Pr = 50, Bo = 5 
Pr = 5, Bo = 5 
Pr = 1, Bo = 5  
Pr = 50, Bo = 50 
Pr = 5, Bo = 50 
Pr = 1, Bo = 50 
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The critical wave number for each combination of Biot number on the free surface 
and domain aspect ratio has been studied. The perturbations are divided in stationary and os-
cillatory depending on the imaginary part of the eigenvalue. The increase of Γ allows to pass 
from a stationary unstable mode to an oscillatory one, then further increasing Γ to a stationary 
mode again. The wave number is found to be positively correlated with the domain aspect ra-
tio. 

It has been showed that different perturbation types share a common boundary in the 
Bi-Γ plane, these points where two competing solutions are found are known as co-dimension 
two points. 

For a constant value of the Biot number (Bi = 0.8), the critical Rayleigh number 
generally decreases with the domain aspect ratio, while the critical wave number tends to in-
crease. Different instabilities are found along the constant Bi line, mixing both oscillatory and 
stationary ones. The increase of Pr has a stabilizing effect on the flow which becomes unsta-
ble for higher Rayleigh numbers; as well the increase of Bo has an unstabilizing effect, result-
ing in higher wave numbers. The range of aspect ratios characterized by oscillatory solutions 
also increases with increasing Bo. For low Prandtl number, the types of the arising instabili-
ties are different in the cases of Bo = 5 and Bo = 50, in particular for low aspect ratios, Γ be-
tween 3 and 4 where a higher Bond number promotes the appearance of Stationary Rolls. 

The co-dimension two points present a tendency that does not depend on the Prandtl 
number since most of the points lay along two curves (one for each value of the Bond number 
considered in this work) in the Biot-Marangoni plane. It is shown that for the highest Bond 
number analyzed (Bo = 50), the thermocaliparity effects are negligible and the Biot number 
plays a small role in the flow description. On the other hand for smaller Bond numbers  
(Bo = 5) some points lay out the curve. These cases are related with a high aspect ratio of the 
flow domain. 
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