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In this work, 3-D and two-phase nanofluid flow and heat transfer is modeled over 
a stretching infinite solar plate. The governing equations are presented based on 
previous studies. The infinite boundary condition and shortcoming of traditional 
analytical collocation method have been overcome in our study by changing the 
problem into a finite boundary problem with a new analytical method called opti-
mal collocation method. The accuracy of results is examined by fourth order Run-
ge-Kutta numerical method. Effect of some parameters, Prandtl number, Schmidt 
number, Brownian motion parameter, thermophoresis parameter, λ=b/a (ratio of 
the stretching rate along y- to x-directions), and power-law index on the veloci-
ties, temperature, and nanoparticles concentration functions are discussed. As an 
important outcome of our 3-D model analysis, it is found that increase in thermo-
phoretic forces can enhance the thickness of both thermal and nanoparticle volume 
fraction boundary-layers. 
Key words: solar plate, nanofluid, nanoparticle concentration, infinite boundary, 

optimal collocation method

Introduction

Nanofluids have been widely investigated to increase the thermal efficiency of the so-
lar devices, such as for cavity [1], solar plates [2], and heat pipes [3]. The flow over moving or 
stationary solid surfaces has been a prime interest of researchers due to their various engineering 
applications when employing nanofluids. Except of experimental and numerical works in this 
field, some researchers worked analytically on the nanofluids treatment in solar applications. 
Khan et al. [4] analyzed the 3-D flow of nanofluid over an elastic sheet stretched non-linearly 
in two lateral directions under the solar radiation using Runge-Kutta method. In another work, 
Cregan et al. [5] considered both a radiative transport equation describing the propagation of 
solar radiation through the nanofluid and an energy equation for the steady-state, 2-D model of 
an inclined nanofluid-based direct absorption solar collector. Turkyilmazoglu [6] evaluated the 
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alumina nanoparticles effect on thermal performance of a water based solar collector analyti-
cally. We have studied the transient vertical motion of a soluble particle in a Newtonian fluid 
media [7], motion of a spherical particle on a rotating parabola [8] or in a fluid forced vortex [9] 
by efficient mathematic methods. Additionally, Dogonchi et al. [10] investigated the motion of 
spherical solid particle in plane Couette Newtonian fluid flow. 

Comparison of the single and two-phase modelling for the nanofluids has been con-
sidered by the researchers. For instance, Fard et al. [11] compared the results of the single 
phase and two-phase numerical methods for nanofluids in a circular tube. They reported that 
for Cu-water the average relative error between experimental data and CFD results based on 
single-phase model was 16% while for two-phase model it was only 8%. In another numerical 
study, Goktepe et al. [12] compared these two models for nanofluid convection at the entrance 
of a uniformly heated tube and found the same results. Mohyud-Din et al. [13] considered the 
3-D heat and mass transfer with magnetic effects for the flow of a nanofluid between two par-
allel plates in a rotating system. They found that thermophoresis and Brownian motion param-
eters are directly related to heat transfer but are inversely related to concentration profile. The 
3-D flow of nanofluids under the radiation (due to solar or etc.) has been analyzed by Hayat et 
al. [14]. Other related work can be found in literatures [15-22]. 

There are some simple and accurate analytical techniques for solving non-linear dif-
ferential equations such as weighted residuals methods (WRM) and differential transformation 
method. Collocation method (CM), Galerkin method (GM), and least square method (LSM) 
are examples of the WRM which are introduced by Ozisik [23] for solving the heat transfer 
problems. Stern and Rasmussen [24] used CM for solving a third order linear differential 
equation. Vaferi et al. [25] have studied the feasibility of applying of an orthogonal CM to 
solve diffusivity equation in the radial transient flow system. Recently we have used LSM for 
heat transfer study through porous fins [26]. This accurate method has been applied to fully 
wet circular porous fin [27], semi-spherical porous fins [28], and straight solid and porous fins 
[29], etc. Gao and Duan [30] developed and analyzed least-squares approximations for the in-
compressible magneto-hydrodynamic equations. Ghasemi et al. [31] found that LSM is more 
appropriate than other analytical methods for solving the non-linear heat transfer equations.

It has been reviewed that nanofluids flow problem can be treated both by numerical 
[32] or optimization [33] methods. In the present study, an application of nanofluids for a solar 
plate is introduced. The 3-D and two-phase nanofluid flow and heat transfer analysis over a 
stretching infinite solar plate was studied. We aim to investigate the heat transfer and fluid-flow 
by an efficient technique for solving the non-linear governing equation. Considering the infinity 
boundary condition of the studied problem, an optimal collocation method (OCM) is used and 
some valuable results have been obtained.

Problem description

A nanofluid flow over a solar plate 
proposed as by Khan et al. [4] is shown in 
fig. 1. The flow is incompressible and in-
duced due to plate stretched in two direc-
tions by non-linear functions. The plate is 
maintained at constant temperature and the 
mass flux of the nanoparticles at the wall 
is assumed to be zero. The 3-D governing 
equations will be [4]: 

Figure 1. Schematic of the nanofluid flow over a 
stretching solar plate
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Here u  and v  are the velocities in the x- and y-directions, respectively, T  – the tem-
perature, C  – the concentration, BD  – the Brownian diffusion coefficient of the diffusing spe-
cies, and DT – the thermophoretic diffusion coefficient. Because the plate is infinite and is 
stretched in two directions as described by non-linear functions, the relevant boundary condi-
tions are:
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By introducing these parameters:

 

( ) ( )

( ) ( ) ( )

( )

1
2

1
2

( ), ( )

1 1
2 2

( ) , ( ) ,

n n

n

f

n

w f

u a x y f v a x y g

n nw a x y f g f g

T T C C a x y z
T T C

η η

υ η

θ η φ η η
υ

−

−
∞ ∞

∞ ∞

′ ′= + = +

+ − ′ ′= − + + + +  

− −
= = = +

−

 (7)

and substituting the previous variables into eqs. (1)-(5), one can get:

 ( ) ( )1 0
2

nf f g f n f g f+′′′ ′′ ′ ′ ′+ + − + =  (8)

 ( ) ( )1 0
2

ng f g g n f g g+′′′ ′′ ′ ′ ′+ + − + =  (9)

 ( ) 21 1 0
Pr 2

n f g Nb Ntθ θ φ θ θ+′′ ′ ′ ′ ′+ + + + =  (10)

 1Sc( ) 0
2

n Ntf g
Nb

φ φ θ+′′ ′ ′′+ + + =  (11)



Hatami, M., et al.: Three-Dimensional and Two-Phase Nanofluid Flow and Heat Transfer ... 
874 THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 871-884

These systems of non-linear equations should be solved by a powerful numerical or 
analytical method. In this study OCM is applied with these boundary conditions:
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where Pr is the Prandtl number, Sc – the Schmidt number, Nb – the Brownian motion parameter, 
Nt – the thermophoresis parameter, λ = b/a – the ratio of the stretching rate along y- to x-direc-
tions are parameters as tdefined in [4].

Collocation and optimal collocation method

The CM method is one of the approximation techniques for solving differential equa-
tions called the WRM. As the main idea of this method, a differential operator, D, is supposed 
to be acted on a function u to produce a function p [15]:

 [ ]D ( ) ( )u x p x=  (13)

We wish to approximate u by a function u, which is a linear combination of basic 
functions chosen from a linearly independent set. That is:
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Now, when substituted into the differential operator, D, the result of the operations is 
not ( )p x . Hence an error or residual will exist:

 [ ]( ) ( ) D ( ) ( ) 0E x R x u x p x= = − ≠  (15)

The target in the collocation is to force the residual to zero in some average sense over 
the domain. That is:
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where the number of weight functions, iW , is exactly equal to the number of unknown con-
stants ic  in u. The result is a set of n  algebraic equations for the unknown constants ic . For the 
CM, the weighting functions are taken from the family of Dirac δ  functions in the domain. 
That is, ( ) ( )i iw x x xδ= − . The Dirac δ  function has the property of:
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Residual function in eq. (15) must be forced to be zero at specific points. Further, we 
will use the OCM to solve eqs. (8)-(11). This method can be considered as a modification of the 
CM. To implement the method, the physical region [0, )η = ∞  is transformed into the region 

1 1][0,η η∞=  and 2 2[0, ]η η∞=  along the x- and y-directions for the hydrodynamic bound-
ary-layer, 3 3 ][0,η η∞=  and 4 4[0, ]η η∞=  for the thermal and nanoparticle volume fraction 
boundary-layer, respectively. The 1η∞ , 2η∞ , 3η∞ , and 4η∞  are supposed to be sufficiently large 
and are the maximum values of η  at the edge of the boundary-layer. The values of η∞  change 
when we have variable parameters. Note that, η∞  is a function of Sc, Pr, Nb, Nt, λ , and n  de-
termined as a part of solution. On the other hand, by introducing the following change of vari-
able z1=η1/η∞1, z2=η2/η∞2, z3=η3/η∞3 and z4=η4/η∞4, the problem transforms into the interval [ ]0,1  
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instead of [0, η∞]. Applying the previous transformations, the governing equations eqs. (8)-(11) 
can be transformed into the following form: 
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where 1 1 1( )/( ) fh z η η∞= , 2 2 2( )/( ) gk z η η∞= , 3 3 3( )/( )M z θ η η∞= , 4 4 4( )/( )N z φ η η∞=  and the 
prime denotes the derivatives with respect to [0,1]z∈ . Also, the boundary conditions can be 
transformed into:

 1 2 3 4
3

10 0, 0, 1, , , 0Nz z z z H K H K M NbM tNλ
η∞

′ ′ ′ ′= = = = ⇒ = = = = = + =  (22)

 1 2 3 4 1 0, 0, 0, 0z z z z h k M N′ ′= = = = ⇒ = = = =  (23)

In this method, the last boundary conditions are obtained by using the asymptotic 
conditions:

 0, 0, 0, 0f gη θ φ′′ ′′ ′ ′→ ∞ ⇒ = = = =  (24)

The extra boundary conditions (24) can be replaced by the conditions:

 1 2 3 4 1 0, 0, 0, 0z z z z H K M N′′ ′′ ′ ′= = = = ⇒ = = = =  (25)



Hatami, M., et al.: Three-Dimensional and Two-Phase Nanofluid Flow and Heat Transfer ... 
876 THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 871-884

The asymptotic condition (25) is to be imposed for computing 1η∞ , 2η∞ , 3η∞ , and 
4η∞ . We wish to obtain an approximate solution for this problem in the interval 0 < z < 1. To 

construct a trial solution, we choose the basic function to polynomial in z. The trial solution 
contains undetermined coefficients c:

 ( ) 3
1

2 4 7
1 31 12 61 1 1:z z z zH c c zc c z= + + + + +  (26)

 ( ) 2 3 4 7
2 2 2 27 9 21228K c c c cz z z z z zλ + + + + +=   (27)

 ( ) 5
2 3 6

13 143 3
3

13 313 8
1 c c c cz z zM z z
η∞

+ + + + +=   (28)

 ( ) 6
19 13 21

2 3
4 4 4 422 2 45

NtN c c c c c
Nb

z z z z z− + + + +=   (29)

The accuracy of the solution can be improved by increasing the number of its terms. 
Whereas the trial solution must satisfy the boundary conditions of (24) and (25) for all values 
of c, thus we have the following:

 1 2 61 2 3 7 0c c c+ + + + =  (30)

 7 8 122 7 13c c cλ + + + + =  (31)

 13 14 8
3

1
1 0c c c
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The 1η∞ , 3η∞ , 4η∞ , and 4η∞  in eqs. (18)-(21) can be calculated by using the extra 
boundary conditions given in eq. (25). This yields:

 1 2 3 62 6 1 02 42c c c c+ + + =  (34)

 7 8 9 122 6 12 42 0c c c c+ + + + =  (35)

 13 14 15 182 3 6 0c c c c+ + + + =  (36)

 13 21 25 02 6Nt c c c
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By introducing 1( )g z , 2( )h z , 3( )M z , and 4( )N z  to differential equations (18)-(21), 
residual functions will be found:

 ( )1 2 12 1 2 11 2, ,..., , , , ,R c c c z zη η∞ ∞ ,   ( )1 2 12 1 2 12 2, ,..., , , , ,R c c c z zη η∞ ∞ , 

 ( )1 2 25 1 2 3 4 1 2 3 43 , ,..., , , , , , , , , iR c c c z z z z Wη η η η∞ ∞ ∞ ∞

and 

 ( )1 2 25 1 2 3 4 1 2 3 44 , ,..., , , , , , , , ,zR c c c z z zη η η η∞ ∞ ∞ ∞ .

In the OCM, the numbers of weight functions, Wi, are:

 
i iw c bn n n= −  (38)
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where 
icn  are the numbers of unknown constants and ic , and bn  are the number of equations 

that satisfy the boundary conditions. On the other hand, the residual function must be close to 
zero. For reaching to this aim, specific points in the domain [0,1]z∈  should be chosen. These 
points are:

 1 1 1
1 2 50, 0, , 0
6 6 6

R R R= = =     
     
     

  (39)

 2 2 2
1 2 50, 0, , 0
6 6 6

R R R= = =     
     
     

  (40)

 3 3 3
1 2 50, 0, , 0
6 6 6

R R R= = =     
     
     

  (41)

 4 4 4
1 2 50, 0, , 0
6 6 6

R R R= = =     
     
     

  (42)

In this problem, we have a set of nine algebraic equations: four equations, eqs.  
(30)-(33), which satisfy the boundary conditions, four equations, eqs. (34)-(37), which satisfy 
the extra boundary conditions and twenty equations, eqs. (39)-(42), with residual function kept 
close to zero. By solving this system of equations, unknown coefficients ic , 1η∞ , 3η∞ , 4η∞ , and 

4η∞  will be determined. Finally after specifying these unknown parameters, the velocity and 
temperature distribution will be determined. For example, using OCM for a nanofluid with  
Sc = 1, Pr = 25, Nb = 0.1, Nt = 0.1, 0.5λ = , and n = 3 ( )f η , ( )g η , ( )θ η , and ϕ(η) are as shown 
in eq. (43). In a similar manner, we will obtain other solutions for cases of different parameters. 
The results will be presented in next section.

2 3 7

2 3 7

2 6

( ) 1.0000000000 0.9682222966 0.6478596724 0.0018627118
g( ) 0.5000000003 0.4841111523 0.3239298503 0.0009313565
( ) 1.0000000000 19.3130049200 154.9379597000 987.7535926000

(

f η η η η η

η η η η η

θ η η η η
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− + +

= − + + +

= − + +

+

+

=






2 6) 0.9615385160 19.3130049300 161.1354819000 1201.7536980000η η η η= − + − + −

 (43)

Results and discussion

In order to ensure the accuracy of the present results, at first we compare our results 
corresponding to the shear stress at the surface, i. e., (0)f ′′  and (0)g ′′ , for various values of n  
and λ  with the available published results of Khan et al. [4] and presented in tab. 1. This table 
confirms that an excellent agreement exists between the presented analytical method and previ-
ous shooting method. For better perception, a sample data and absolute errors is presented for 
other parameter values and velocity profiles in x and y directions via tab. 2. This table also 
confirms the high accuracy of our described method. Here, the influences of mathematical pa-
rameters appeared in the mathematical section on velocities, temperature and nanoparticle vol-
ume fraction profiles are discussed physically. Figure 2 demonstrate the effect of the power-law 
index n on the x- and y-components of dimensionless velocity. As is seen, with the increase of 
the power-law index n, both the dimensionless velocity in the x- and y-directions decreases 
correspondingly. 

Also, it can be seen that the decrement of velocity in the x- and y-direction are equal 
roughly. For example, both the velocities in the x- and y-direction are decreased by about 60% 
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at η = 1 when the n change from 1 to 4. Our results show that both velocity profiles are decreas-
ing function of power index. The effect of this power index on temperature and nanoparticles 
volume fraction boundary-layer profile is depicted via fig. 3. It is clear that thermal bound-
ary-layer will be thinner for larger n values while nanoparticles concentration profile become 
thicker, both of which augments, in turn, the rate of heat transfer from the sheet. It can also be 
found that the greater the n value is, the faster the decline of θ will be. It is proposed that the 
increasing n can enhance the convective properties of the fluid since it will increase the defor-
mation by the shear stress from the wall to the fluid. 

Table 1. Comparison between OCM and numerical shooting [4] in predicting f′′(0)  
and g′′(0) values

n λ –f′′(0) shooting [4] OCM OCM –g′′(0) shooting [4] OCM Error
1 0 1 0.992650 0.007350 0.000000 0.000000 0.000000
1 0.5 1.224745 1.215743 0.009002 0.612372 0.607871 0.004501
1 1 1.414214 1.403819 0.010395 1.414214 1.403819 0.010395
3 0 1.624356 1.606584 0.017772 0.000000 0.000000 0.000000
3 0.5 1.989422 1.936444 0.052978 0.994711 0.968222 0.026489
3 1 2.297186 2.236013 0.061173 2.297186 2.236013 0.061173

Table 2. Comparison between OCM and numerical results when λ = 0.5, n = 3
η Numerical f′(η) OCM Error Numerical g′(η) OCM Error
0 1.000000 1.000000 0.000000 0.500000 0.500000 0.000000

0.1 0.821284 0.824577 0.003293 0.410642 0.412288 0.001646
0.2 0.677489 0.681129 0.003640 0.338745 0.340565 0.001820
0.3 0.560912 0.563781 0.002869 0.280456 0.281890 0.001434
0.4 0.465764 0.467639 0.001875 0.232882 0.233819 0.000937
0.5 0.387641 0.388668 0.001026 0.193821 0.194334 0.000513
0.6 0.323159 0.323571 0.000412 0.161579 0.161786 0.000206
0.7 0.269685 0.269681 0.000004 0.134842 0.134840 0.000002
0.8 0.225157 0.224858 0.000299 0.112578 0.112429 0.000149
0.9 0.187941 0.187400 0.000541 0.093970 0.093700 0.000271
1 0.156735 0.155962 0.000774 0.078368 0.077981 0.000387

1.1 0.130494 0.129483 0.001011 0.065247 0.064741 0.000506
1.2 0.108371 0.107124 0.001247 0.054185 0.053562 0.000623
1.3 0.089677 0.088215 0.001462 0.044839 0.044107 0.000731
1.4 0.073850 0.072210 0.001640 0.036925 0.036105 0.000820
1.5 0.060426 0.058654 0.001771 0.030213 0.029327 0.000886
1.6 0.049022 0.047157 0.001865 0.024511 0.023579 0.000932
1.7 0.039321 0.037379 0.001942 0.019661 0.018690 0.000971
1.8 0.031059 0.029023 0.002037 0.015530 0.014511 0.001018
1.9 0.024016 0.021837 0.002178 0.012008 0.010919 0.001089
2 0.018005 0.015632 0.002373 0.009003 0.007816 0.001187

2.1 0.012873 0.010296 0.002577 0.006436 0.005148 0.001288
2.2 0.008487 0.005830 0.002657 0.004244 0.002915 0.001329
2.3 0.004738 0.002390 0.002349 0.002369 0.001195 0.001174
2.4 0.001533 0.000331 0.001201 0.000766 0.000166 0.000601
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The influence of stretching rate ratio, λ, on the velocities components and tempera-
ture/nanoparticles concentration is presented in figs. 4 and 5, respectively. Physically, increase 
in stretching rate ratio, or the large values of λ ( = b/a), means either increase in b or decrease in 
a, so it is expected to further lead to acceleration of the downward flow along the vertical direc-
tion, and as a result, a decrease in x-component and increase in y-component velocity profiles 
would occur. Moreover, increasing the stretching rate ratio makes a colder fluid-flow due to 
higher heat transfer process as can be found in fig. 5. Consequently, the thermal boundary-layer 
becomes thinner and both temperature and concentration profiles decrease. 

As is well known, heat transfer rate is a decreasing function of Nt and Schmidt num-
ber. A higher Prandtl number fluid possesses stronger convection as compared to pure con-
duction and effective in transferring energy through unit area. The reduced Nusselt number 
therefore increases with an increase in Prandtl number. Figure 6 represents the effect of Prandtl 
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number on the thermal boundary-layer. As shown in this figure, temperature, θ, decreases and 
becomes very close to the ambient temperature and the slope of temperature distribution near 
wall become steeper with an increment of Prandtl number. As Khan et al. [4] reported, an in-
crease in Prandtl number accompanies with weaker thermal diffusivity and restricts the heat 
from flowing deeper into the nanofluid, so thermal boundary-layer becomes decreased with an 
augmentation of Prandtl number. 

Schmidt number was defined as the ratio of momentum diffusivity to mass diffusivity, 
so an increase in Schmidt number also corresponds to the decrease of the Brownian diffusion 
coefficient, BD . In accordance with Kuznetsov and Nield [34], the effect of increase in Brown-
ian motion parameter on the temperature profile for natural convective boundary-layer flow of 
a nanofluid past a vertical plate is negligible. Similar conclusion could be made for our case. 
However, Brownian motion parameter could make a great difference for nanoparticle distribu-
tion in nanofluid. As shown in fig. 7, the smaller BD , corresponding to higher Schmidt number, 
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could result in more nanoparticle penetration due to higher momentum diffusivity which in turn 
gives rise to the shorter penetration depth of nanoparticle volume fraction, φ . The thermopho-
retic force is the force that diffuses nanoparticles into ambient flow and due to the existence of 
the increased amount of the nanoparticles in the fluid the temperature gradient will be smaller. 
Thus, increase in Nt can lead to thicker thermal boundary-layer and higher nanoparticles vol-
ume fractions along z-direction, i. e., higher ϕ, as shown in fig. 8. Also, it can be seen that the 
temperature profiles become less steep with the increment of Nt. The observed curve character-
istic is supposed to be due to the decrease in Nusselt number. 

Finally, the effect of Brownian motion parameter, Nb, on nanoparticles volume frac-
tion function is shown in fig. 9. This figure reveals that Brownian motion parameter has an in-
verse effect compared to Nt. Actually, an increase in Nb can lead to the decrease in nanoparticles 
concentration. Therefore, φ  will decrease upon the increasing of the Brownian motion param-

Figure 6. Effect of Prandtl number on 
temperature boundary-layer (for color 
image see journal web site)
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Figure 8. Effect of thermophoresis parameter, Nt, on temperature and nanoparticles 
volume fraction functions (for color image see journal web site)
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eter Nb. The similar trend has been observed by Mus-
tafa [35]. In their study, the laminar axisymmetric flow 
of nanofluid over a non-linearly stretching sheet has 
been studied. The model used for nanofluid considers 
the simultaneous effects of Brownian motion and ther-
mophoretic diffusion of nanoparticles.

Conclusion

In this study, a new analytical method called 
OCM have been successfully applied to find the solu-
tion of 3-D modelling of heat transfer for two-phase 
nanofluids flow over an infinite stretching solar plate. 
Due to infinite boundary condition and shortcoming of 
traditional analytical CM method, by a variation in the 
variables, the problem was changed to a finite boundary 
problem and solved by described method. The results 
show that OCM results are in excellent agreement with 
those of numerical solution. By a parametric study, it 

was found that the velocity along the x- and y-directions decrease with the increase in power-law 
index n, so shear stresses at the wall are decreasing functions of power-law index. Additionally, 
the effect of some parameters, Prandtl number, Schmidt number, Brownian motion parameter, 
thermophoresis parameter, ratio of the stretching rate, λ = b/a, along y- to x-directions, and 
power-law index, n, appeared in the mathematical section on the velocities, temperature and 
nanoparticles concentration functions is discussed. As an important outcome of our 3-D model 
analysis, results show increase in stretching rate ratio, or the large values of λ (= b/a), means 
either increase in b or decrease in a, it is thus expected to further lead to the acceleration of the 
downward flow along the vertical direction. 
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