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A thermal buckling analysis of functionally graded thick rectangular plates accord-
ing to von Karman non-linear theory is presented. The material properties of the 
functionally graded plate, except for the Poisson’s ratio, were assumed to be graded 
in the thickness direction, according to a power-law distribution, in terms of the 
volume fractions of the metal and ceramic constituents. Formulations of equilibrium 
and stability equations are derived using the high order shear deformation theory 
based on different types of shape functions. Analytical method for determination of 
the critical buckling temperature for uniform increase of temperature, linear and 
non-linear change of temperature across thickness of a plate is developed. Numeri-
cal results were obtained in МATLAB software using combinations of symbolic and 
numeric values. The paper presents comparative results of critical buckling tempera-
ture for different types of shape functions. The accuracy of the formulation presented 
is verified by comparing to results available from the literature.
Key words: thermal buckling, von Karman non-linear theory, shape function, 

higher-order shear deformation theory, power-law distribution

Introduction

Functionally graded materials (FGM) are composite materials in which there is a con-
tinuous and a discontinuous variation of their chemical composition and/or micro-structure 
through defined geometric distance. Mechanical properties such as Young’s modulus of elastic-
ity, Poisson’s ratio, shear modulus, as well as material thickness, are graded in recommended 
directions, and a gradient property can be stepwise or continuous, [1]. Delamination between 
layers is the biggest and the most frequently analyzed problem concerning conventional com-
posite laminates. Most frequently used FGM is metal/ceramics, where ceramics have a good 
temperature resistance, while metal is superior in terms of toughness. Functionally graded ma-
terials, which contain metal and ceramic constituents, improve thermo mechanical properties 
between layers because of which delamination of layers should be avoided due to continuous 
change between properties of the constituents. By varying a percentage of volume fraction 
content of the two or more materials, FGM can be formed so that it achieves a desired gradient 
property in specific directions.
*Corresponding author; e-mail: dragan.cukanovic@pr.ac.rs
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The thermoelastic behavior of a FG rectangular ceramic-metal plate was presented 
by Praveen and Reddy [2] by using a four node rectangular finite element based on the first 
order shear deformation theory (FSDT), including von Karman’s non-linear effect. Using and 
expanding the adopted formulation by Praveen and Reddy, Reddy [3] studied the static analysis 
of the FG rectangular plates using the third order shear deformation theory (TSDT). Using the 
TSDT, he defined displacement field based on the finite element of the plate with the eight-de-
grees of freedom per node. This formulation explains the thermo mechanical coupling and von 
Karman’s geometrical non-linearity. Woo and Meguid [4] studied non-linear deformations of 
thin FG plates and shells using von Karman’s classical non-linear plate theory under thermo 
mechanical loads. The authors compared the stresses and displacements for ceramic, metal 
and FG plates and they concluded that displacements of the FG plate were, even with a small 
ceramic volume fraction, significantly smaller than displacements of the metal plate. Ma and 
Wang [5] researched large deformations by bending and buckling of an axisymmetrical simply 
supported and fixed circular FG plate using the von Karman’s non-linear plate theory. The au-
thors of the paper made an assumption that mechanical and thermal properties of FG materials 
vary continuously according to the power law of the volume fraction of the constituents. Lanhe 
[6] derived equilibrium and stability equations of a moderately thick rectangular simply sup-
ported FG plate under thermal loads using FSDT. Buckling temperature is derived for two types 
of thermal loading – uniform temperature increase and gradient increase through the thickness 
of the plate. Chi and Chung [7, 8] obtained a closed form solution of a simply supported FG 
rectangular moderately thick plate under transverse load using the classical plate theory and 
Fourier series expansion. They assumed that the elastic modulus varies in the thickness direc-
tion of the plate, depending on the variation of the volume fraction of the constituents. Poisson’s 
ratio remains constant. Closed form analytical solution is proven by comparing to numerical 
results with finite element method. Chung and Che [9] analyzed a simply supported, elastic, 
moderately thick, rectangular FG plate under linear temperature changes in the thickness di-
rection of the plate. They assumed that Young’s modulus of elasticity and Poisson’s ratio are 
constant throughout the plate. However, the thermal expansion coefficient varies depending on 
the variation of the volume fraction of the constituents, based on the power law or exponential 
function in the thickness direction.

Description of the problem

Functionally graded rectangular plates of a × b × h dimensions, where the z-axis is 
in direction of thickness, h, are studied in this paper. Young’s modulus of elasticity, thermal 
expansion coefficient and changes in temperature are defined according to the power law [10]:
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respectively, where subscripts c and m refer to ceramics and metal, respectively. By using sub-
stitution (1 /  2 + z / h) = Λ, each of the previously mentioned laws represents a function of L. 
If the product is further defined as E(z)⋅α(z)⋅T(z), it is not difficult to conclude that for defined 
properties of materials and defined values of p and s (p defines the percentage of ceramic or metal 
volume, 0 < s < ∞ [10]), ∆Tcr remains the only unknown value in the product. Analytical proce-
dure for determining the critical buckling temperature for uniform increase of temperature, linear 
and non-linear change of temperature across the thickness of a plate, is developed here.
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Displacement field and constitutive equations

Disadvantages of the classical lamination theory, and the first FSDT which require 
correctional factors, are eliminated by many authors by introducing the shear deformation 
shape functions (SF), tab. 1. Many of those SF are introduced in order to give the better results 
for specific kinds of loads and specific static or dynamical problems. It should be emphasized 
that the following SF are not generally applicable to all kinds of problems.

Таble 1. Shear deformation SF defined by different authors
Number of 

shape | 
function 

Name of authors Shape function f(z) 

SF 1 Ambartsumain [11] ( )( )2 2/2 /4 /3z h z−

SF 2 Reissner and Stavsky [12] ( )( )2 25 /4 1 4 /3z z h−

SF 3 Stein [13] ( ) ( )/ sin /h z hπ π

SF 4 Mantari, et al. [14] ( ) ( ) ( )cos / / 2sin / /2z hz h e z hππ + π

SF 5-6 Mantari et al. [15] ( ) ( ) { }2tan sec /2 , 1/5 , /2mz zm mh m h h− = π

SF 7 Karama, et al. [16] 
Aydogdu [17] ( )[ ] ( )[ ]2 2

exp 2 / ,   exp 2 / /ln ,  >0z z h z z h α α− − ∀

SF 8 Mantari, et al. [18] ( )2
2 /2.85 0.028z hz z−⋅ +

SF 9 Meiche, et al. [19] ( ) ( )[ ] { }/ sin / ,   1,1/cosh( /2) 1h z h zξ ξπ π − = π −

SF 10 Soldatos [20] ( ) ( )sinh / cosh 1/2h z h z−

SF 11 Akavci [21] ( ) ( ) ( ) ( )[ ]2 2sec / sec /4 1 /2 tanh /4z h z h z h− π − π π

SF 12 Akavci [21] ( ) ( ) ( ) ( )23 /2 tanh / 3 /2 sech 1/2h z h zπ − π

SF 13 Mechab, et al. [22]
( )
( )

( )
( )

cos 1/2 sin /

1 cos 1/2 1 cos 1/2

z h z h
−

− + − +

The displacement field is here taken as follows, [15]:

	 	 (2)

where f (z) is a SF. In order to define components of unit loads, it is necessary to apply the 
relations between displacements and strains in accordance with the von Karman’s non-linear 
theory of elasticity [2]. Using a generalized Hooke’s law, as well as the stiffness matrix [10], 
and taking into account the effect of the change in temperature eq. (1) and thermal expansion, 
which cause a strain αΔT [23], the following components of unit loads are obtained:
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In eq. (3), by grouping the terms with the elements of constitutive matrix, it is possible 
to define new matrices:
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In order to get an equilibrium equation, it is necessary to define the deformation ener-
gy in the following form [10]:
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Using the principles of minimum potential energy, equilibrium equations become:
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Stability equation for a thick FG plate is derived based on the equilibrium eq. (6). The 
stability equation of the plate under thermal load can be defined using the displacement com-
ponents u0, ν0, w0, θx0, and θy0. Displacement components of the next stable configuration are:
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where u1, ν1, w1, θx1, and θy1 are the displacement components of arbitrarily small deviation from 
the stable configuration. Assuming that temperature is constant in the xy-plane of the plate and 
that it is changing only in the thickness direction of the plate, the stability equation can be de-
rived by substituting eq. (7) and eq. (3) into eq. (6). In such obtained equation, terms u0, ν0, w0, 
θx0, and θy0 do not exist because they vanish due to satisfying the equilibrium condition eq. (6). 
Therefore, the stability equations of the functionally graded rectangular plate are:
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where N0
xx, N0

yy, and N0
xy, are the resultants of the pre-buckling forces:

 		  (9)

Equation (8) can be solved by using the analytical and numerical methods. In order 
to obtain analytical solutions, assumed solution forms and boundary conditions are adopted in 
accordance to Navier’s methods applied in [24-26]. Procedure for obtaining the results by com-
bining the symbolic and numerical coefficient values, which occur in these kinds of problems, 
is implemented.

Boundary conditions along edges of the simply supported rectangular plate, according 
to [26], are the following:

		  (10)

Taking into account the previously defined boundary conditions, based on [24], it is 
possible to assume that Navier’s solution is in the following form:
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where Umn, Vmn, Wmn, Txmn, Tymn are arbitrary parameters, which are to be determined. Further-
more, using the Navier’s solution, equilibrium equation becomes:

	 [ ]L I U} 0{− Ω = 	 (12)

where U = {Umn Vmn Wmn Txmn Tymn}T and Ω is the buckling parameter. Coefficients Lij, (i, j = 1-5) 
are defined in the following way:
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while the matrix Iij, (i, j = 1-5) is defined:
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where α = mπ / α, β = nπ / b. To obtain the non-trivial solutions, it is necessary for the determi-
nant in eq. (12) to be equal to zero:

	 L I 0− Ω =   	 (15)

Numerical results

The aim of this section is to check the accuracy and the effectiveness of the given 
theory in determining the critical buckling temperature of FG plates for uniform increase of 
temperature, linear and non-linear change temperature across thickness. In order to do that, 
different numerical examples are shown, and the obtained results were compared to the results 
available from the literature. The theory presented in this paper is verified by the examples of 
the square plate a/b=1, which was considered in [27, 28, 10]. Unlike [28], where TSDT is ap-
plied, and [27, 10] where higher order shear deformation theory (HSDT) is applied, based on 
just one SF, comparative analysis of all SF (tab. 1) is done here. Besides the results, which are 
available in the literature, this paper shows results for a/h (5 and 10) and a/b (2 and 5) ratios. 
Material properties, used in the numerical examples, were:

Metal (Aluminum): EM = 0.7⋅105 [MPa], n = 0.3, αM = 23⋅10–6 [oC–1],
Ceramics (Alumina): EC = 3.8⋅105 [MPa], n = 0.3, αC = 7.4⋅10–6 [oC–1].
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Table 2. Comparison of critical buckling temperatures (∆Tcr) of rectangular FGM plates 
under a uniform increase of temperature (a / h = 5, a / h = 10 and m = n = 1)

 p Source
a / h = 5 a / h = 10

a / b = 1 a / b = 2 a / b = 5 a / b = 1 a / b = 2 a / b = 5

0

[27] --- --- --- 1618.680 --- ---
[28] --- --- --- 1617.484 --- ---
[10] --- --- --- 1618.750 --- ---
SF 1 5583.442 10959.448 23192.800 1618.681 3747.312 12872.652
SF 2 5583.442 10959.448 23192.800 1618.681 3747.312 12872.652
SF 3 5585.559 10971.195 23351.112 1618.820 3748.159 12891.308
SF 4 5621.881 11128.293 24554.451 1621.682 3764.011 13119.689
SF 5 5583.426 10959.286 23189.151 1618.681 3747.307 12872.361
SF 6 5587.882 10970.575 23065.303 1619.120 3749.487 12883.915
SF 7 5590.910 10995.856 23580.381 1619.225 3750.450 12928.084
SF 8 5591.659 10999.186 23608.379 1619.283 3750.774 12932.982
SF 9 5591.659 10999.186 23608.379 1619.283 3750.774 12932.982

SF 10 5583.400 10958.981 23181.701 1618.681 3747.302 12871.799
SF 11 5591.409 10983.034 23086.289 1619.429 3751.109 12900.319
SF 12 5584.615 10966.460 23297.570 1618.752 3747.766 12884.026
SF 13 5583.510 10960.024 23204.664 1618.684 3747.333 12873.662

1

[27] --- --- --- 758.390 --- ---
[28] --- --- --- 757.891 --- ---
[10] --- --- --- 758.424 --- ---
SF 1 2671.531 5398.066 12201.408 758.395 1775.555 6406.862
SF 2 2671.531 5398.066 12201.408 758.395 1775.555 6406.862
SF 3 2672.409 5403.230 12280.777 758.450 1775.899 6415.235
SF 4 2687.462 5472.168 12882.413 759.588 1782.344 6517.540
SF 5 2671.524 5397.995 12199.578 758.395 1775.553 6406.732
SF 6 2673.373 5402.958 12137.451 758.570 1776.440 6411.918
SF 7 2674.629 5414.066 12395.630 758.611 1776.831 6431.733
SF 8 2674.939 5415.529 12409.648 758.634 1776.963 6433.930
SF 9 2674.939 5415.529 12409.648 758.634 1776.963 6433.930

SF 10 2671.514 5397.861 12195.841 758.395 1775.551 6406.479
SF 11 2674.835 5408.433 12147.980 758.692 1777.099 6419.278
SF 12 2672.017 5401.149 12253.939 758.423 1775.740 6411.967
SF 13 2671.559 5398.320 12207.357 758.396 1775.563 6407.316

10

[27] --- --- --- 692.690 --- ---
[28] --- --- --- 692.519 --- ---
[10] --- --- --- 692.570 --- ---
SF 1 2276.788 4205.548 7964.373 692.694 1562.032 4840.685
SF 2 2276.788 4205.548 7964.373 692.694 1562.032 4840.685
SF 3 2275.519 4203.601 8011.792 692.544 1561.350 4839.654
SF 4 2290.659 4265.870 8477.768 693.799 1568.105 4929.058
SF 5 2276.857 4205.716 7963.455 692.702 1562.066 4840.864
SF 6 2285.447 4231.109 7961.675 693.549 1566.244 4871.915
SF 7 2276.487 4209.521 8092.708 692.597 1561.714 4849.198
SF 8 2276.720 4210.599 8103.084 692.615 1561.814 4850.812
SF 9 2276.720 4210.599 8103.084 692.615 1561.814 4850.812

SF 10 2277.006 4206.087 7961.620 692.717 1562.141 4841.265
SF 11 2286.626 4234.654 7962.595 693.664 1566.815 4876.290
SF 12 2275.691 4203.457 7994.618 692.570 1561.457 4838.988
SF 13 2276.584 4205.060 7967.439 692.672 1561.928 4840.175
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In the case of graded change in temperature, the temperature at the metal surface is 
TM = 5 oC. Table 2 shows the values of critical buckling temperatures of rectangular FG plates 
under a uniform increase of temperature. Thick and moderately thick plates were considered 
in ratios a / h = 5 and a / h = 10. Using the ratios, a / h = 10, a / m = 1 and p = 0, there was a 
good match of results for all the given SF with the results from the papers [10, 27, 28]. An in-
significant deviation was noticed in the SF marked as SF4. During the analytical procedure in 
MATLAB, it is noticed that only SF1, SF2, SF3, SF10, SF13 could give solutions for integrals 
defined in eq. (4) in closed form, while in the case of other SF, a numerical integration had to 
be conducted. It is noticed that the difference between results obtained by different SF increases 
with the increase of the (a / b) ratio, and it decreases with the increase of (a / h) ratio, proving the 
fact that the effect of SF is inversely proportional to the plate thickness.

Figure 1(a) a shows the decrease of the difference between the obtained results with 
the increase of the value p, so when p > 5, the constant ratio a / h = 10 and a variable ratio  
(a / b), the curves merge. The SF do not have a significant effect on this behavior because the 
curves obtained by the use of SF3, SF10, SF12 and SF13 completely overlap, which can be 
clearly seen in the fig. 1(a). In fig. 1(b), it can be clearly seen that the increase of (a / h) ratio, 
regardless of the p value, causes the curves to asymptotically approach zero, which is in accor-
dance with the fact that thin plates have lower resistance to temperature change.
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Figure 1. Effect of the aspect ratio a / b and a / h on the critical buckling temperature ΔTcr  
under an uniform increase of temperature

Similar situation can be noticed under the linear change of temperature. All the pre-
sented SF gave the results, which match the ones from the papers [10, 27, 28]. The greatest 
deviation is noticed in the SF4. Table 3 shows the obtained values of the critical buckling tem-
perature, ΔTcr, as well as the matching with values given in the literature. 

The curves in fig. 2(a)-2(c) are of the same nature as in the previous case. Figure 1(d) 
clearly shows that with the ratio values a / h = 5, a / h = 10, a / b = 1 and the increase of the value 
p, the curves asymptotically approach a specific value. The value of the horizontal asymptote 
for a rectangular plate depends mainly on the a / h ratio.

Table 4 shows numerous values of critical buckling temperatures of rectangular FG 
plates under a non-linear change of temperature across their thickness. There was a perfect 
match of the results for square plates under ratio values of a / h = 5, a / h = 10 and s = 2, s = 5 for 
all SF with the results given in the references [10, 27, 29]. A deviation of the results for all SF is 
within the permitted limits, which can be clearly seen on the diagram showing a complete overlap 
of curves which correspond to the different SF.
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Table 3. Comparison of critical buckling temperatures (ΔTcr) of rectangular FGM plates under a 
linear change of temperature across their thickness (a / h = 5, a / h = 10, m = n = 1 and Tm = 5 °C)

p Source
a / h = 5 a / h = 10

a / b = 1 a / b = 2 a / b = 5 a / b = 1 a / b = 2 a / b = 5

0

[27] --- --- --- 3227.360 --- ---
[28] --- --- --- 3224.968 --- ---
[10] --- --- --- 3227.510 --- ---
SF 1 11156.885 21908.895 46375.601 3227.364 7484.624 25735.303
SF 2 11156.885 21908.895 46375.601 3227.364 7484.624 25735.303
SF 3 11161.117 21932.391 46692.225 3227.640 7486.319 25772.617
SF 4 11233.762 22246.586 49098.902 3233.365 7518.023 26229.378
SF 5 11156.852 21908.572 46368.301 3227.363 7484.616 25734.721
SF 6 11165.765 21931.151 46120.607 3228.241 7488.976 25757.830
SF 7 11171.821 21981.711 47150.762 3228.451 7490.901 25846.167
SF 8 11173.319 21988.372 47206.759 3228.567 7491.550 25855.963
SF 9 11173.319 21988.372 47206.759 3228.567 7491.550 25855.963
SF 10 11156.801 21907.961 46353.401 3227.364 7484.605 25733.597
SF 11 11172.819 21956.069 46162.578 3228.859 7492.219 25790.637
SF 12 11159.229 21922.920 46585.139 3227.506 7485.533 25758.051
SF 13 11157.020 21910.049 46399.328 3227.368 7484.667 25737.324

1

[27] --- --- --- 1412.960 --- ---
[28] --- --- --- 1412.023 --- ---
[10] --- --- --- 1413.020 --- ---
SF 1 5000.989 10114.514 22873.951 1412.968 3320.615 12006.476
SF 2 5000.989 10114.514 22873.951 1412.968 3320.615 12006.476
SF 3 5002.635 10124.198 23022.805 1413.071 3321.261 12022.180
SF 4 5030.867 10253.490 24151.154 1415.205 3333.348 12214.049
SF 5 5000.976 10114.380 22870.518 1412.967 3320.612 12006.231
SF 6 5004.443 10123.687 22754.003 1413.295 3322.275 12015.958
SF 7 5006.798 10144.520 23238.207 1413.373 3323.009 12053.121
SF 8 5007.381 10147.264 23264.499 1413.416 3323.257 12057.241
SF 9 5007.381 10147.264 23264.499 1413.416 3323.257 12057.241
SF 10 5000.956 10114.129 22863.511 1412.968 3320.608 12005.758
SF 11 5007.186 10133.956 22773.750 1413.525 3323.512 12029.762
SF 12 5001.901 10120.295 22972.472 1413.021 3320.962 12016.051
SF 13 5001.042 10114.989 22885.109 1412.969 3320.631 12007.327

10

[27] --- --- --- 1218.630 --- ---
[28] --- --- --- 1218.328 --- ---
[10] --- --- --- 1218.420 --- ---
SF 1 4025.755 7443.641 14104.519 1218.639 2759.160 8569.143
SF 2 4025.755 7443.641 14104.519 1218.639 2759.160 8569.143
SF 3 4023.504 7440.189 14188.549 1218.372 2757.952 8567.316
SF 4 4050.334 7550.535 15014.289 1220.596 2769.923 8725.746
SF 5 4025.876 7443.938 14102.892 1218.652 2759.221 8569.461
SF 6 4041.099 7488.936 14099.738 1220.154 2766.624 8624.486
SF 7 4025.220 7450.681 14331.938 1218.467 2758.597 8584.229
SF 8 4025.632 7452.592 14350.324 1218.498 2758.774 8587.089
SF 9 4025.632 7452.592 14350.324 1218.498 2758.774 8587.089
SF 10 4026.140 7444.595 14099.641 1218.680 2759.354 8570.171
SF 11 4043.188 7495.218 14101.369 1220.358 2767.635 8632.239
SF 12 4023.810 7439.935 14158.116 1218.418 2758.142 8566.137
SF 13 4025.392 7442.776 14109.953 1218.600 2758.976 8568.240
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Table 4. Comparision of critical buckling temperatures (ΔTcr) of rectangular FGM plates under a 
non-linear change of temperature across their thickness (a / h = 5, a / h = 10, m = n = 1 and Tm = 5 °C)

p Source
a / h = 5 a / h = 10

a / b = 1 a / b = 5 a / b = 1 a / b = 5
s = 2 s = 5 s = 2 s = 5 s = 2 s = 5 s = 2 s = 5

0

[27] 16730.0 33470.0 --- --- 4840.0 9680.0 --- ---
[29] 16741.6 33483.3 --- --- 4841.4 9682.9 --- ---
[10] 16738.8 33477.7 --- --- 4841.2 9682.5 --- ---
SF 1 16735.3 33470.6 69563.4 139126.8 4841.0 9682.0 38602.9 77205.9
SF 2 16735.3 33470.6 69563.4 139126.8 4841.0 9682.0 38602.9 77205.9
SF 3 16741.6 33483.3 70038.3 140076.7 4841.4 9682.9 38658.9 77317.8
SF 4 16850.6 33701.2 73648.3 147296.7 4850.0 9700.0 39344.0 78688.1
SF 5 16735.2 33470.5 69552.4 139104.9 4841.0 9682.0 38602.0 77204.1
SF 6 16748.6 33497.2 69180.9 138361.8 4842.3 9684.7 38636.7 77273.4 
SF 7 16757.7 33515.4 70726.1 141452.3 4842.6 9685.3 38769.2 77538.5
SF 8 16759.9 33519.9 70810.1 141620.3 4842.8 9685.7 38783.9 77567.8
SF 9 16759.9 33519.9 70810.1 141620.3 4842.8 9685.7 38783.9 77567.8
SF 10 16735.2 33470.4 69530.1 139060.2 4841.0 9682.0 38600.4 77200.7
SF 11 16759.2 33518.4 69243.8 138487.7 4843.2 9686.5 38685.9 77371.9
SF 12 16738.8 33477.6 69877.7 139755.4 4841.2 9682.5 38637.0 77274.1
SF 13 16735.5 33471.0 69598.9 139198.0 4841.0 9682.1 38605.9 77211.9

1

[27] 7450.0 15280.0 --- --- 2100.0 4310.0 --- ---
[29] 7458.6 15287.8 --- --- 2106.8 4318.2 --- ---
[10] 7457.5 15285.6 --- --- 2106.7 4318.1 --- ---
SF 1 7456.1 15282.8 34103.5 69901.7 2106.6 4317.9 17900.8 36691.1
SF 2 7456.1 15282.8 34103.5 69901.7 2106.6 4317.9 17900.8 36691.1
SF 3 7458.5 15287.8 34325.5 70356.5 2106.7 4318.2 17924.2 36739.1
SF 4 7500.6 15374.1 36007.7 73804.7 2109.9 4324.7 18210.3 37325.5
SF 5 7456.1 15282.7 34098.4 69891.2 2106.6 4317.9 17900.4 36690.4
SF 6 7461.2 15293.3 33924.7 69535.1 2107.1 4318.9 17914.9 36720.1
SF 7 7464.8 15300.5 34646.6 71014.8 2107.2 4319.1 17970.3 36833.7
SF 8 7465.6 15302.3 34685.8 71095.1 2107.3 4319.3 17976.5 36846.3
SF 9 7465.6 15302.3 34685.8 71095.1 2107.3 4319.3 17976.5 36846.3
SF 10 7456.0 15282.7 34088.0 69869.7 2106.6 4317.9 17899.7 36689.0
SF 11 7465.3 15301.7 33954.1 69595.4 2107.4 4319.6 17935.5 36762.3
SF 12 7457.5 15285.6 34250.4 70202.7 2106.7 4318.1 17915.1 36720.4
SF 13 7456.2 15282.9 34120.2 69935.8 2106.6 4317.9 17902.1 36693.7

10

[27] 5540.0 9530.0 --- --- 1670.0 2880.0 --- ---
[29] 5536.9 9525.5 --- --- 1676.6 2884.4 --- ---
[10] 5537.3 9526.2 --- --- 1676.7 2884.5 --- ---
SF 1 5540.0 9530.8 19409.8 33392.1 1677.0 2885.0 11792.3 20287.2
SF 2 5540.0 9530.8 19409.8 33392.1 1677.0 2885.0 11792.3 20287.2
SF 3 5536.9 9525.5 19525.5 33591.0 1676.6 2884.4 11789.8 20282.9
SF 4 5573.8 9589.0 20661.8 35545.9 1679.7 2889.7 12007.9 20658.0
SF 5 5540.1 9531.1 19407.6 33388.2 1677.0 2885.1 11792.8 20287.9
SF 6 5561.1 9567.2 19403.2 33380.7 1679.1 2888.6 11868.5 20418.2
SF 7 5539.2 9529.6 19722.8 33930.5 1676.7 2884.6 11813.1 20322.9
SF 8 5539.8 9530.5 19748.1 33974.0 1676.8 2884.7 11817.0 20329.7
SF 9 5539.8 9530.5 19748.1 33974.0 1676.8 2884.7 11817.0 20329.7
SF 10 5540.5 9531.7 19403.1 33380.5 1677.0 2885.1 11793.8 20289.6
SF 11 5564.0 9572.1 19405.5 33384.6 1679.3 2889.1 11879.2 20436.6
SF 12 5537.3 9526.2 19483.6 33519.0 1676.7 2884.5 11788.2 20280.1
SF 13 5539.5 9530.0 19417.3 33404.9 1676.9 2885.0 11791.1 20285.1
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Figure 2. Effect of the aspect ratio a / b and a / h on the critical buckling temperature ΔTcr under a linear 
change of temperature

Figure 3(c) shows that the increase of non-linearity of temperature change causes the 
fastest increase of ΔTcr for the value p = 0. For larger p values, curves of the temperature change 
increase somewhat more slowly, but comparing to the previous cases, there is no complete 
matching of curves when p = 5 or p = 10. For the value s > 6, these curves start to go in the 
different directions and their separation is clearly seen.
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Figure 3. Effect of the aspect ratio a / b, a / h and parameter s on the critical buckling temperature ΔTcr 
under a non-linear change of temperature

Conclusion

Based on the presented results, it can be concluded that SF given in tab. 1 are accept-
able for the thermo mechanical analysis of functionally graded plates. The results obtained 
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through the developed analytical procedure matched the results given in the literature. Taking 
into account the fact that SF have a significantly larger effect on thick and moderately thick plates, 
results are limited to ratios a / h = 5 and a / h = 10. This paper proves that the volume fraction of 
metal//ceramic constituents and the shape of the plate (a / b ratio), have a significantly larger effect 
on the temperature resistance than the chosen deformation theory. It is also shown that the biggest 
deviations occur when the value of the parameter p is low, while the increase of the value p causes 
the differences between the critical temperatures to be reduced or completely vanish. Separation 
of the curves, which correspond to the greater values of the parameter p, occurs with the increase 
of non-linearity of a temperature change, namely with the increase of the s parameter.
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