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The multiple-relaxation time lattice-Boltzmann method is implemented to investi-
gate combined natural and forced convection occurring in a 2-D square cavity. 
The top wall slides to the right at constant speed, while the other three remain sta-
tionary. The solution is performed for a left vertical wall at a constant temperature, 
which is higher than of the right wall. This yields a “co-operating” case, in which 
dynamic and buoyancy forces are added together. The enclosure is filled with air 
and contains a heat conducting circular cylinder, which is placed at various posi-
tions. The double distribution model used in lattice-Boltzmann methods has been 
adopted to simulate the hydrodynamic and thermal fields, with the D2Q9 and D2Q5 
lattices selected to perform the corresponding computations. Simulations have been 
conducted over a wide range of Rayleigh and Reynolds numbers, and the features 
of dynamic and thermal fields are presented for the spectra of this mixed convection 
phenomenon. The flow and heat transfer characteristics of the cylinder position 
are described and analyzed in terms of the average Nusselt number. The computed 
results show the influence of the cylinder on the corresponding heat transfer in the 
enclosure. It has been found that the power (i.e. shear stress) needed to lid the upper 
surface will depend on the governing parameters.
Key words: lattice-Boltzmann method, mixed convection, flow cylinder interaction

Introduction

The flow problem in a 2-D lid driven cavity is a classical topic in scientific computing, 
which has been extensively studied using numerical methods for more than 40 years now. In a 
similar vein, numerous studies have treated the flow motion and heat transfer on a differentiated 
heated cavity. These basic tests cases have led to a huge number of publications which have ex-
plained the fundamental physics of different types of flows over a wide range of Reynolds and 
Rayleigh numbers. Moreover, the combination of both cavity flows, that is, mixed convection 
heat transfer, has also been widely analyzed, because this physical phenomenon takes place in 
a number of engineering devices and processes: heat exchangers, electronic part cooling, solar 
collectors, and glass coating, to name a few. The flow dragged by such moving wall impinges 
the vertical stationary wall, which directs the flow downward with sharp gradient is equivalent 

* Corresponding author, e-mail: rachid.bennacer@ens-cachan.fr



Bennacer, R., et al.: Differentiated Heated Lid Driven Cavity Interacting ... 
90 THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 89-104

to a wall jet. Secondary vortices form at the corner as the Reynolds number increases. Most of 
the studies on lid driven cavity consider steady state-condition. The brief state of the art for such 
mixed convection is available in [1]. In spite of this important body of applications, very few 
investigators have considered the case of mixed convection in cavities containing obstacles. 
Flow patterns are obviously modified by obstacles, but, most importantly, their presence has a 
direct impact on heat transfer and shear stress. The problem considered here involves a cavity 
which contains a circular cylinder. The top boundary of the cavity moves to the right, and the 
vertical walls are differentially heated. The cylinder, the diameter of which remains constant, 
is placed at various positions in the cavity. Because of the temperature difference applied along 
the vertical walls, buoyancy forces play a role and the flow becomes more complex than in a 
simple driven cavity. Depending on the side where the hot wall is located, left or right, a con-
vective effect that works with or against the lid driven convection is obtained, respectively. 
The goal of our study is to characterize the heat transfer performance in the co-operating case, 
with respect to the cylinder position within the cavity, which will be assessed by means of the 
Nusselt number. The value of this parameter will ultimately provide an indication from which 
to infer the position of the cylinder in order to achieve improved heat transfer. 

To address the issue of fluid flow and heat transfer, numerical studies have been per-
formed during the past four decades or so, based on the solution of discrete forms of the Navi-
er-Stokes (NS) equations, with techniques such as the finite volume, finite difference, or finite 
element methods. In contrast to this classical CFD methodology, a quite different understand-
ing of numerical fluid motion has led to the development of a new method, called the lattice 
Boltzmann method (LBM) [1-8]. The LBM is a strategy with the distinctive feature of tackling 
complex flow problems across all scales: macro, micro, and nano. 

The method can be derived in two different ways. It can be seen as a continuous version of a 
discrete micro-dynamic system that obeys simple rules, known as Cellular Automata (CA) [9-11]. Al-
ternatively, the dynamics of the LBM can be obtained from the Boltzmann equation continuum, which 
concerns the motion of molecules in a gas and explains their behavior statistically at a continuum level.

The second approach, which establishes a direct link between the LBM and the Boltz-
mann equation from statistical mechanics, was introduced by Shan and He [6]. The works of 
Abe [12] and He and Luo [8] formally show that the LBM can be considered a specific discret-
ization of Boltzmann equation without following the CA path.

The evolution of the particles is essentially split into two steps: streaming and collision. 
Key to the application of the LBM is the collision process. In order to simplify its treatment, a lin-
earized collision operator [13] was introduced. A further enhancement was added by Higuera et al. 
[3], in which the link with the collision rules for the lattice gas was loosened, increasing its ability 
to handle more realistic Reynolds numbers. A crucial improvement was made with the introduction 
of a lattice Boltzmann version [4] of the Bhatnagar-Gross-Krook (BGK) model [14]. Owing to its 
exceptional simplicity, this single-relaxation time (SRT) model is the most popular variant of the 
collision operator today. In spite of its success, some shortcomings at the stability level have been 
pointed out by D’Humieres [15], and by Lallemand and Luo [16]. In this study, which is devoted 
to mixed-convection, we use the lattice Boltzmann multiple-relaxation time (MRT) methodology 
developed in a previous work [1] focusing on heat transfer performance on a rectangular cavity 
with different aspect ratios, A. Specifically, we extend the method to study the flow problem in 
a square lid driven cavity containing a circular cylinder, combined with the buoyancy generated 
by a horizontal temperature difference, that is, from vertical walls at different temperatures. The 
inclusion of such cylinder could modelizing the cross tube achieving the fluid distribution or, as in 
the present study, an obstacle modifying the flow structure and which could initiate unsteadiness. 
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Heat transfer is investigated for different Reynolds and Rayleigh numbers at various 
cylinder locations. The effect of the cylinder position on the heat transfer is assessed by means 
of the average Nusselt number. 

The lattice Boltzmann numerical method

The LBM [17, 18], is based on a microscopic model that yields macroscopic fluid 
properties, such as density, velocity, and temperature. The so-called lattice-BGK (LBGK), a 
variant of the LBM introduced by Chen et al. [19], Koelman [20], and Qian et al. [4], can be 
seen as a discrete solution of the Boltzmann transport equation for particle distribution func-
tions in a simplified phase space [8]. The corresponding physical space is usually represented 
by a Cartesian lattice.

In our work here, we have adopted the 2-D discretization, known as the D2Q9 lattice, 
for handling the flow dynamics, and the D2Q5 model for computing the temperature. With such 
discretization, sets of particles expressed by discrete distribution functions move on the lattices 
from cell to cell along nine (i = 1 to 9 ) or five (i = 1 to 5 ) directions, with constant molecular 
speeds, ci, proportional to a constant lattice velocity c = δx/δt, where δx and δt are the lattice 
grid spacing and time step, respectively. 

Let us now consider the fundamental distribution equation describing the evolution 
of the kinetic equation for the particle distribution function f(x,c,t). This fundamental equation 
depends on the particle velocity, c, at location, x, and at time, t, and is given by:

 f c f
t

Ω∂
+ ∇ =

∂
 (1)

The right-hand side of this equation indicates the diffusion process whereby the equi-
librium distribution is rebuilt after the collision. The modeling of this term is crucial in the lat-
tice Boltzmann approach, and there are various alternatives for treating it. We concentrate here 
on the D2Q9 lattice, in order to recall a few basic concepts.

For this lattice, the state of the fluid at location, x, and at time, t, is defined by means 
of nine (i = 0, 1,…, 8) distribution functions fi following the discrete molecular speed ci. Their 
evolution can thus be described by:

 i( , 1) ( , )i i if x c t f x t Ω+ + = +  (2)

In this expression, ci = 0 for i = 0, takes the value 1 for (i = 1, 2, 3, 4), and corresponds 
to 21/2 for (i = 5, 6, 7, 8). The mesh size is δx = δy = 1 and the time step δt = 1 in lattice units. 
For the D2Q9 lattice, the nine directions can be defined by: 
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The symbol Ωi denotes the collision operator. The most popular approach for model-
ing it is what has been called the SRT LBGK model [4], given by:

 
1 ( , ) ( , )eq

i i i i
f x t f x tΩ τ  = − −   (4)

where fi (x,t) and fi
eq (x,t) are the particle distribution function and the equilibrium particle dis-

tribution function of the ith discrete particle velocity ci, respectively. The right-hand side rep-
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resents the BGK collision, which accounts for the variation in the number of particles moving 
in each direction on the lattice due to microscopic inter-particle collisions [5]. These collisions 
are embedded in a SRT, τ, which is linked to the kinematic viscosity, ν, by:

 ( ) 21/2 /3t cν τ δ= −  (5)

In spite of the simplicity of the SRT-BGK representation, a general alternative has 
been proposed to model the collision with the aim of improving the accuracy and stability of 
the method. This alternative is the MRT model [21].

The fundamental idea of MRT models is to transform the collision by projecting the 
discrete distribution functions into a so-called momentum space, and then relaxing these func-
tions towards equilibrium with different relaxation times. The goal of this treatment is to im-
prove the accuracy and stability of the numerical scheme.

When considering the MRT model, the collision operator can be expressed:

 ( )1 eq
i i iij

j
M SM f fΩ −  = − − ∑  (6)

where [M] indicates a transformation matrix which projects the discrete distribution functions fi 
into a new set of variables mi, leading to what is known as the moment space. This is achieved 
by applying m = Mf [22]. For the case of the D2Q9 lattice, f = [ f0, f1, f2, … f8,], m = [m0, m1, m2, 
… m8], and [M] is obviously a 9 × 9 matrix. According to the current D2Q9 lattice, the nine 
macroscopic moments are:

 ( , , , , , , , , )x y xx xy x ym j j e T T q qρ ε=  (7)

All the elements of the moment vector have a physical meaning: fluid density ρ = m0, 
the x and y momentum components jx and jy equal m1 and m2, respectively, a quantity e = m3 is 
related to kinetic energy, a term ε = m4 related to the square of the energy, quantities Txx and Txy 
corresponding to the diagonal and off-diagonal components of the stress tensor m5 and m6, re-
spectively, and, finally, components qx and qy related to the energy fluxes m7 and m8, respectively.

The corresponding transform matrix [M] can be constructed via the Gram-Schmidt 
process [21, 23]. For the calculation of the temperature field, a second distribution function 
based on the internal energy, the evolution of which can also be followed with an MRT-LB 
modeling, is used. Specifically, the moment model is still applied, but with the first moment 
used to compute the density replaced by one suited for calculation of the temperature.
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The temperature is handled by the D2Q5 lattice topology, the discrete velocities, ck, are:

 

(0,0) 0
cos[( 1) /2],sin[( 1) /2] / , 1 4k

k
c

k k x t kδ δ
=

=  − π − π ≤ ≤  (8)

 ( , 1) ( , )k k k kg x c t g x t Ω+ + = +  (9)

Like that of the density distribution function, the evolution of the discrete distribution 
functions gk associated with the temperature can be written: in which the term Ωk denotes the 
collision operator for the redistribution of the populations gk on each site. Following the MRT 
method [22], this step is performed in the momentum space. For our D2Q5 lattice here, there are 
five moments mk (instead of the nine for the D2Q9) related to the gk distribution functions via  
m = Mg with [24]: 
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The first moment m0 is conserved, and corresponds to the temperature, that is: 
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The non-conserved momenta are supposed to relax to an equilibrium eq
km  state, as is 

the case for the density distribution function, that is: 

 (ac bc eq bc
k k k k km m s m m= + −  (11)

where sk indicates the relaxation rate for each moment related to the evolution of the gk popu-
lations. As for the hydrodynamic development, the sk are not equal for each moment and need 
to satisfy the constraint 0 < sk < 2, in order for a numerically stable scheme to be achieved. As 
mentioned in [25], with the choice of 1 0eqm = , 2 0eqm = , 3 0eqm = , and 4 0eqm = , and using the 
Taylor expansion [24, 26], it is possible to find the diffusion equation up to order three in δt:
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with s1 = s2 = s, δx = δt = 1, and a = −2, and, if for a given 2-D velocity field u( , )u v


 it is con-
sidered that 1 2,eq eqm uT m vT= = , the lattice Boltzmann scheme yields the following classical 
diffusion equation: 
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Because of the temperature difference between the two vertical walls, a buoyancy 
f g ( , )T xβ=




 acts in the y-direction (vertical), where g  indicates the acceleration due to grav-
ity and β the thermal expansion coefficient. Buoyancy corresponds to a body force which mod-
ifies the linear momentum conservation in the collisions. So, in general, for the fx and fy compo-
nents of the body force, the formulas describing the moments 1

acm  and 2
acm  become: 

 1 1
ac bc

xm m f= +  (15-a)

 2 2
ac bc

ym m f= +  (15-b)

Geometry and boundary conditions

The geometry, shown in fig. 1, consists of a 2-D square cavity with side length, L, con-
taining a circular cylinder of radius R/L = 0.1. The top wall of the cavity is driven to the right at a 

constant speed, U0, while all the other walls remain station-
ary. The vertical walls are maintained at different constant 
temperatures. The left wall is kept hot, at, TH, while the right 
wall is kept cold, at, TC. The top and bottom walls of the 
enclosure are kept in an adiabatic state. The cavity is filled 
with air (Pr = 0.71). The circular cylinder in the cavity con-
ducts heat, so it is supposed to have the same thermal con-
ductivity as the air, and its position will change horizontally 
at a constant height H/L = 0.7 measured from the bottom.

The LBM is mostly applied on a regular Cartesian 
mesh, which is one of its practical advantages. Neverthe-
less, the accuracy in the handling of the curved boundaries 
can be improved, while maintaining Cartesian lattices over 
the entire domain. However, special treatment is clearly re-
quired to smooth out the irregularities caused by a Cartesian 
mesh on curved boundaries. One such treatment, which was 
introduced by Fillipova and Hanel [27] or by Mei et al. [28], 

can be seen more as a general bounce-back method. An alternative method was proposed by Guo et 
al. [29] for treating boundary conditions, including a combination of density, velocity, temperature, 
and their derivatives, or different, physically intuitive interpolation scheme introduced by Bouzidi 
et al. [30], based on the method of characteristics.

The left and right walls of the cavity are maintained at constant and different tempera-
tures TH and TC, hot and cold, respectively. The upper and bottom surfaces are considered to be 
adiabatic. The inner circular cylinder is a heat conductor, and is assumed to have the same thermal 
conductivity as the fluid. The top boundary moves horizontally from left to right. The x-velocity 
component of the top surface is defined as U0, while the y-velocity is obviously zero. Initially, the 
velocities at all nodes are set to zero, except for the upper-most nodes. The hydrodynamic boundary 
condition commonly applied on solid walls is the no-slip condition, which implies that the relative 
velocity of the fluid with respect to the wall vanishes. This is implemented in the LBM with the 
bounce-back rule, which establishes that all particles hitting the wall are reflected back in the direc-
tion of the source. Boundary conditions for the temperature are set between two consecutive nodes: 

Left boundary: (0.5, ) 0.5 (0.5 0.5)h yy y Nθ θ= = ≤ ≤ +
Right boundary: ( 0.5, ) 0.5 (0.5 0.5)x c yN y y Nθ θ+ = = − ≤ ≤ +

Figure 1. Geometry containing a 
circular cylinder and boundary 
conditions

g

L

H/L
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TH

R

Adiabatic
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Bottom boundary: ( ,0.5) 0 (0.5 0.5)xx x N
y
θ∂

= ≤ ≤ +
∂

Top boundary:  ( , 0.5) 0 (0.5 0.5)y xx N x N
y
θ∂

+ = ≤ ≤ +
∂

where θ is the dimensionless temperature, and Nx and Ny are the lattice sites in the x and y direc-
tions, respectively. Noting that vx and vy are the velocity components along the x- and y-direc-
tions, respectively, the boundary conditions for the velocity at the top boundary can be written:

 0( , 0.5) , ( , 0.5) 0 (1/2 0.5)x y y y xv x N U v x N x N+ = + = ≤ ≤ +  
All the other velocity components are zero on the remaining cavity boundaries, as 

well as on the cylinder periphery. 

Results

In an earlier investigation, the current MRT model was validated for both natural 
convection and forced convection flows in a 2-D cavity. Then, a combined lid driven cavity in-
vestigation was carried out with co-operating and opposing thermal effects at different Rayleigh 
and Reynolds numbers [1, 31]. In the current study, a circular cylinder with a relative size  
R/L = 0.1, in which R indicates the radius of the cylinder and L the length of the side of the 
cavity, are introduced into the enclosure. Specifically, the cylinder is placed at five horizontal 
positions at a distance of 0.3L from the top. Its various locations are expected to show the im-
pact on the flow characteristics and heat transfer strength (evaluated by the Nusselt number). 
As previously shown [1-31], natural or forced convection prevails, depending on the action of 
the Rayleigh or Reynolds numbers.

The current computational domain is composed of 200 × 200 lattice sites. This grid 
refinement was reached after a basic test for mesh independence. Calculations with succes-
sively refined grids were applied for a test with Re = 103 for pure forced convection, and with  
Ra = 106 for pure natural convection. When the error between the two finest meshes led to flow 
and temperature fields that varied by less than one order of magnitude, the last but one grid 
was chosen. Finally, the finest grid in the two situations was selected as the most suitable. The 
parameters taken into account to test mesh independence are standard for this kind of problem; 
namely, the average Nusselt number on the hot, Nu+, and cold, Nu–, vertical walls, respectively, 
and the maximum horizontal velocity component, u, evaluated at the midpoint of the vertical 
plane, x = L/2.

The results are presented and discussed in terms of dynamic and thermal fields. The 
evolution of the averaged heat transfer quantified by the Nusselt number is presented vs. the 
Rayleigh number, using the Reynolds number as a parameter. Results could also have been han-
dled via Richardson’s number, Ri = Ra/(PrRe2), which translates the competition from natural 
to forced convection. In the study, the thermal conductivities of the solid cylinder and of the 
fluid have been set equal, and the calculations have been performed for the air as the working 
fluid, that is, for Pr = 0.7. 

In an earlier work [31], pure natural convection tests (Re = 0) and pure lid driven 
cavity tests (Ra = 0) were performed using the current LB approach, and the results extensively 
compared and validated with classical benchmarks. This validation step is not repeated here. 
However, we did perform basic tests for mixed convection prior to the inclusion of the cylinder 
to provide a guide for assessing the relative changes as a result of combining buoyancy and 
shear forces. For purposes of research continuity, we have kept the same parameters as reported 
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in [31] to conduct this basic validation. Figure 2 illustrates the flow (stream function) and ther-
mal (temperature) fields for a selected Re = 103 and for Ra = 10–3, 103, 105, and 106. 

Ra = 103 Ra = 103 Ra = 105 Ra = 106

Figure 2. Streamlines and isotemperatures for various Rayleigh number values and Re = 103

Up to Ra = 105, the flow field is quite similar to a pure lid-driven cavity problem, 
while the temperature fields appear quite different from those achieved solely by a differentiat-
ed heated cavity, except for Ra = 106. This result simply indicates that, up to Ra = 105, forced 
convection prevails over natural convection and that the temperature field is modified by the 
dynamic structure. Note that the latter situation corresponds to the transition of Richardson 
number, Ri = Re/Ra1/2, of order 1.

When the Rayleigh number increases, from 105 to 106, the impact of the buoyancy 
forces grows, and the leading role of the lid driven flow and the thermal flow changes. Nat-
ural convection now becomes dominant far from the lid surface for Ra = 106. This is clearly 
illustrated by the vertical stratification of isotherms, which resembles those found in a pure 
natural convection problem. This is verified by the flow field, which is now greatly affected 
by the strength of the buoyancy forces, and the flow in the bulk of the cavity is accelerated 
due to forced and natural effects combined. We note the effect on the thermal boundary layer 

of such a strong flow, which accelerates and 
moves from the heated wall to the cold one, 
inducing an irregular local heat transfer on 
the vertical walls. The flow in the bulk of the 
domain decreases, and separate boundary 
layers are observed on the different surfaces. 
Such localized flow with a relatively slow-
er motion in the bulk of the domain is the 
reason for the mainly diffusive heat transfer 
responsible for the vertical stratification. 

For the (co-operating) case under study, 
fig. 3 shows the average Nusselt number as 
a function of the buoyancy (Ra) and driven 
(Re) forces. From the various plots, it can be 
clearly seen that heat transfer significantly 
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increases with both forced and natural convection. When the Rayleigh number increases, the 
results come closer to those obtained when pure natural convection takes place. In fact, for the 
situation of a developed boundary condition, the Nusselt number in natural convection takes the 
form Nu = 1/δ ~Ra1/4, which is fitted as Nu = 0.277Ra1/4.

For a higher Reynolds number (5∙103), the Nusselt number exhibits a constant behavior, 
i. e. it is independent of Rayleigh number, which illustrates the dominant effect of the lid driven 
condition. Rayleigh number values of 108 will be need to achieve a comparable effect (Ri ~1). 

We now examine the flow and heat transfer characteristics when a circular cylinder is 
placed in the differentiated and heated lid driven cavity. The problem now has a new element, 
which is the cylinder’s position. The horizontal position of the cylinder at a fixed height is an-
alyzed as the governing parameter on the flow field, the temperature distribution, and the heat 
transfer. Computations are performed for five horizontal positions and one vertical location. 
The center of the cylinder is placed at a fixed vertical position of y = 0.7L, measured from the 
bottom, while the corresponding horizontal locations referring to the cavity center (x = –0.5L) 
are x = –0.4L, –0.2L, 0.0L, 0.2L, and 0.4L. We note that, at positions x = –0.4L and x = 0.4L, 
the flow passage is completely blocked between the cylinder and the left and right walls respec-
tively. The following set of figures depicts the streamlines and isotherms computed for the five 
cylinder positions, complemented by the solution for the reference case, without the cylinder, 
at the left-most position. The tests were performed for Ra = 10–3, Ra = 103, Ra = 105, and  
Ra = 106, and for Re = 1, Re = 103, and Re = 5∙103. This means that the combined influence of 
Rayleigh and Reynolds numbers (natural or forced convection strength) on the flow and tem-
perature fields, as well as the cylinder position, can be analyzed for an entire spectrum of cases.

For a viscous dominated flow, represented by Re = 1, the flow and temperature fields 
should correspond to those found for the situation of pure natural convection. In fact, as shown 
in figs. 4, and 5, the solution is completely governed by the buoyancy forces imposed by the 
temperature difference.

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

Figure 4. Streamlines (above) and isotherms (below) for Re = 1 and Ra = 10–3

For the reference case, with no cylinder included, the resulting stream function and 
temperature fields match the well-known results established for the thermal cavity problem. 
The flow patterns show a clockwise rotating cell filling up the entire cavity with hydrodynamic 
boundary layers along the vertical walls and a motionless core region. The temperature field 
indicates the existence of thermal boundary layers along the vertical isothermal walls with a 
large temperature gradient in these regions. From figs. 2 and 4, we can see that including the 
cylinder affects the flow pattern for all Rayleigh numbers. Regarding the thermal field, its dis-
tribution is almost unaffected compared with the reference case, when the cylinder is located 
at the central positions x = –0.2L, x = 0.0L, and x = 0.2L. Nevertheless, the temperature field 
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is modified, mostly near the wall. Such modifications are not significant for weak Rayleigh 
number values, where thermal field is mainly diffusive, fig. 4. Looking at the recirculating flow 
below the tube (circle), we see that the modifications at high Rayleigh numbers, for positions  
x = –0.4L and x = 0.4L, when the flow is blocked between the wall and the cylinder, are sig-
nificant on the flow structure and on the thermal boundary layer. As the flow is mainly the con-
sequence of the volumetric buoyancy forces, the previously underlined re-circulation in the vi-
cinity of the cylinder disappears, fig. 5. This was expected, because the strength of the natural 
convection perturbs the dynamic boundary layer, even for such a low Reynolds number. The 
thermal field is relatively unaffected when the cylinder is outside the thermal boundary layer. We 
must also stress that such thermal stratification is unaffected, because the solid thermal conduc-
tivity is the same as that of the fluid.

For a higher Reynolds number of Re = 103, figs. 6-8 indicate that the flow is mainly 
governed by the lid driven force for Rayleigh numbers up to Ra = 105. With the exception of the 
position x = 0.4L, a large vortex rotating clockwise characterizes the phenomenon. When the 
buoyancy force increases further, the flow structure changes dramatically for all cylinder posi-
tions and the vortex center disappears to give rise to smaller re-circulation zones. Temperature 
gradient reversal is evident in the upper portion of the cavity, due to strong flow re-circulation at 
Ra = 106. In general, the isotherms are quite similar to those found in a pure thermal cavity test. 
For the central cylinder locations x = –0.2L, x = 0.0L, and x = 0.2L, the temperature distribution 
is almost unaffected by body inclusion, and is thermally identical to that of the fluid. It has been 
found that this phenomenon is almost the same for all Reynolds and Rayleigh numbers. At the 
left- and right-most cylinder positions, when the flow is completely blocked between the cyl-
inder and the walls, the temperature and flow fields are more affected, mainly near the vertical 
walls that are kept at constant temperature. 

The flow structure differs more from that of the reference case, with no immersed body, 
when the cylinder is at the right-most position than when is at the left-most location. It should 
be noted that, up to Ra = 105, the cylinder at the right-most position blocks the passage in such a 
way that part of the descending flow returns from right to left in the opposite direction to the lid 
motion. This leads to a vortex near the top that rotates clockwise, while a secondary vortex now 
appears that is rotating counterclockwise, i. e. a drag effect, fig. 6. The cylinder at the left-most 
position reduces the pressure effect and modifies the flow direction. This modification lessens the 
lid driven depth effect and allows the two corner re-circulating cells to collapse into one count-
er-rotating cell, fig. 6. As buoyancy increases, for Ra = 105, a thermal cell tends to settle and 
co-rotates with the lid driven one. In order to decrease the shear stress between the two cells at 
the cylinder vertical level, a tertiary vortex occurs, fig. 7. The upper vortex still rotates clockwise, 

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

Figure 5. Streamlines (above) and isotherms (below) for Re = 1 and Ra = 105
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while a middle one rotates counterclockwise and a weaker vortex, at the cavity bottom, rotates 
clockwise. When buoyancy grows even stronger, characterized by Ra = 106, the tree vortex 
breaks-up, to yield a descending flow pattern that follows the cylinder boundary and continues 
further down, fig. 8. We can clearly see that the addition of the strength of buoyancy and lid driv-
en forces produce a descending flow strong enough to overcome the obstruction caused by the 
cylinder. The local surface (pressure) forces become lower than the volumetric buoyancy forces, 
and a main cell is obtained comprising natural convection and lid driven effects.

For Re = 5∙103, figs. 9 and 10, a dominating forced convection flow prevails almost 
everywhere. With such a high Reynolds number, the shear-induced fluid motion becomes dom-

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

Figure 6. Streamlines (above) and isotherms (below) for Re = 103 and Ra = 10-3

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

 Figure 7. Streamlines (above) and isotherms (below) for Re = 103 and Ra = 105

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

Figure 8. Streamlines (above) and isotherms (below) for Re = 103 and Ra = 106



Bennacer, R., et al.: Differentiated Heated Lid Driven Cavity Interacting ... 
100 THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 89-104

inant and the re-circulation cell increases in size, occupying the central part of the cavity. As in 
the preceding cases, we can note that, for the non obstructed case, the dynamic structure does 
not change (it is the same as in the case of pure forced convection) with the Rayleigh number 
this time, even at a Rayleigh number of 106. Consequently, the thermal field appears almost 
undisturbed by the intensity of the Rayleigh number. As we found for lower Reynolds numbers, 
when the cylinder is located at x = –0.2L, x = 0.0L, and x = 0.2L, the core of the flow pattern 
is modified and secondary recirculation zones appear. Nevertheless, a large clockwise rotating 
flow prevails in all three cases. Also, the thermal field keeps the same qualitative structure as 
in the fundamental case. In fact, because the cylinder has the same thermal conductivity as the 
fluid, the isotherms are only slightly perturbed by the change in the flow pattern.

Unsteady

Unsteady

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

Figure 9. Streamlines (above) and isotherms (below) for Re = 5∙103 and Ra = 103

For the left-most and right-most positions, a new phenomenon is observed. In fact, at 
the right-hand side, when the flow is blocked between the wall and the cylinder, the behavior 
is similar to that found for Re = 105. Specifically, a vortex rotating clockwise appears near 
the top, while up to Ra = 103 a secondary vortex is found rotating counterclockwise. For the 
stronger Rayleigh numbers of Ra = 105 and Ra = 106, there is a weaker tertiary vortex rotating 
clockwise, fig. 10. The situation dramatically changes when the flow is blocked at the left-most 
position. Now, independently of the buoyancy intensity, the lid driven forces produce a flow 
that yields unsteadiness behind the cylinder and there is no globally steady solution.

The cases for which Reynolds number based on the cavity length is higher than 103 
will induce a maximum possible Rec of 102, based on the cylinder’s diameter. As the flow veloc-
ity intensity decreases from the level imposed by the moving boundary to rest on the dynamic 
boundary layer, we expect an average Rec of the order of 50. We recall that the first unsteadiness 

Unsteady

Unsteady

Fundamental                             x = –0.4L                                    x = –0.2L                                     x = 0.0L                                   x = 0.2L                                        x = 0.4L  

Figure 10. Streamlines (above) and isotherms (below) for Re = 5∙103 and Ra = 105
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of a flow around the cylinder is obtained for Rec > 41, and that for such a Reynolds number the 
corresponding Strouhal number (St = f D/V) is approximately 0.2. We now turn to the core of 
this investigation, which is an analysis of the influence of the cylinder position, combined with 
the natural and forced convection intensity ratios, as represented by the Rayleigh and Reynolds 
numbers, respectively. The average Nusselt number for a steady, constant wall temperature is 
represented in figs. 11-13 vs. the Rayleigh number for Reynolds numbers of 1, 103, and 5∙103 
(in a mainly forced convection regime). 
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Figure 11. Evolution of Nusselt number at Re = 1 
for the various cylinder positions
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Figure 12. Evolution of Nusselt number at  
Re = 103 for the various cylinder positions

The set of curves in each figure 
shows what has already been indi-
cated qualitatively by the streamlines 
and isothermal levels. Specifically, 
when the cylinder is sited at x = –0.2L,  
x = 0.0L, and x = 0.2L, the physics 
does not differ too much from the 
physics where there is no cylinder. 
On the contrary, when the cylinder 
blocks the flow between the left and 
right walls, the average Nusselt num-
ber falls by approximately 20% for 
the highest Rayleigh number from 
that of the reference cavity case with 
no immersed body. Comparison of 
these figures also indicates that the heat transfer increases with Reynolds number, due to the 
flow enhancement provided by the increasing inertia. The analysis clearly illustrates that heat 
transfer normally increases with the Rayleigh number when there is no cylinder included. This 
behavior corresponds to the classical mixed convection situation, where buoyancy forces be-
came significant for the transition from convection to natural convection, as expressed by the 
Richardson number. The inclusion of a cylinder in the domain indicates that the overall heat 
transfer decreases in comparison to the reference case. It is important to note what happens to 
the local minimum heat transfer when the cylinder is close to the right-hand wall. The buoyancy 
forces induce a flow against the main cells resulting from the driven cavity and multicells are 
obtained, inducing several weak flow zones near the vertical surface. 

Figure 13. Evolution of Nusselt number at Re = 5∙103 for 
the various cylinder positions
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Conclusions

In this paper, we have applied a 2-D MRT thermal LBM to simulate flow and heat 
transfer in a square cavity filled with air and containing a circular cylinder. The cylinder is 
considered to have the same thermal conductivity as the air. After a basic grid convergence 
test, a discretization using 200 × 200 grid points has been used for all computations. The D2Q9 
and D2Q5 lattices have been exploited to calculate the evolution of the velocity and temperature 
fields, respectively. The cylinder position was placed at a constant height at five horizontal 
positions. The top lid of the cavity slides at constant velocity and the vertical walls are at kept 
at different constant temperatures, while the horizontal walls are considered adiabatic. This 
combination of boundary conditions yields a mixed flow problem. 

The study has been performed for an entire range of flows representing the combined 
effect of forced and natural convection, through a set of values for Ra = 10–3, 103, 105, and 106 
and for Re = 1, 103, and 5∙103. From these twelve cases, it can be concluded that when the 
cylinder is located at the central positions of x = –0.2L, x = 0.0L, and x = 0.2L, heat transfer 
remains essentially the same as for an empty cavity. The impact is clear, though, at positions  
x = –0.4L and x = 0.4L, when the flow passage is completely blocked between the cylinder and 
the walls. Although this could have been anticipated, because the cylinder position refashions 
the boundary layer along the walls, the study allowed us to quantify the impact of the inclu-
sion on the average Nusselt number. Specifically, in the less negative situation, when natural 
convection dominates for Ra = 105, the Nusselt number drops, for all Reynolds numbers, to 
approximately 83% of the value found in the cavity with no cylinder. Some specific situations 
with local minimum heat transfer are noted, and the cylinder has no effect if it is placed away 
from the natural convection and lid driven boundary layers. The optimum situation will be a 
compromise, where heat transfer and lid power achieve a minimum, which will indicate the best 
efficiency exchange system. We stress the possibility of an unsteady oscillatory case, for which 
deeper investigation will be required. One interesting avenue could be the use of a temperature 
boundary condition or lid driven time modulation which would modify heat and shear stress. It 
would be possible to either amplify the unsteadiness (resonance) if the modulation is imposed 
at the same characteristic system frequencies or by damping the previous unsteadiness, if an 
adequate modulation phase delay is chosen. 

Nomenclature

A – aspect ratio, (= H/L), [–]
ci – discrete molecular speed, [ms–1]
f – distribution function
f eq – equilibrium distribution function 
H – enclosure height, [m]
k – thermal conductivity, [Wm–1K–1]
L – enclosure width, [m]
Nu – Nusselt number, [–]
Pr – Prandtl number, (= ν/α), [–]
T – temperature, [K]
t – time, [s]
Ra – Rayleigh number, [= (2T0N3a)/νk], [–]
u – horizontal (x) velocity component, [ms–1]
v – vertical (y) velocity component, [ms–1]

X, Y – dimensionless co-ordinates,  
(X = x/L, Y = y/L), [–]

x, y – dimensional Cartesian co-ordinates, [m]

Greek symbols 

α – thermal diffusivity, [m2s–1]
δt – time step, [–]
δx – lattice constant, [–]
ε – energy, [J]
ν – viscosity, [m2s–1]
Ω – collision operator, [–]
ρ – density, [kgm–3]
τ – relaxation time, [s]
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