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Lubrication is an important phenomenon in a wide field of industry such as auto-
motive, aerospace, mechanical transmission systems, and many others. The vis-
cosity of fluid is a determining factor in the thermal behaviour of lubricant and 
solid surfaces in friction. In practice the viscosity varies strongly as a function of 
local pressure and temperature. In this study we are interested in the effect of tem-
perature on the viscosity and the thermal behavior of the lubricant. We solve the 
dynamic and energy equations under non-linear conditions considering that the 
viscosity decreases following an exponential law of the temperature as it is known 
in the literature, 0( )

0 e T Tβµ µ − −= .
The analytical solution is compared to a numerical modelling using a finite differ-
ence methods. The results show an excellent agreement.
We analyse the effect of the viscosity coefficient, β, on the velocity and the tempera-
ture in the thin lubricant film.
Key words: non-linear lubrication, heat transfer in a thin lubricant film, 

analytical modelling

Introduction

Temperature plays an important role in the lubrication phenomenon. The thermal be-
haviour of lubricant, particularly for thin films, controls the performance of frictional devic-
es. This problem is encountered in several industrial systems such as gear, bearings, journal 
bearing, metal forming, and others. The heat flux generated by friction, and also the velocity 
and temperature of the film depend strongly of the viscosity of the lubricant. The latter varies 
strongly as a function of local pressure and temperature. Several studies were developed in 
the literature to analyse the thermo-hydrodynamic phenomenon of lubricants [1-4]. All show 
that the nature of lubricant and its temperature dependence are determining in the behaviour of 
frictional systems. Several studies show that friction causes very high flash temperature (e. g., 
[5-7]).

An analytical study was developed recently to analyse the effect of the velocity of wall 
on the temperature of a thin lubricant film [8]. The viscosity was considered independent of the 
temperature. In practice the viscosity varies strongly as a function of the local temperature. This 
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behaviour leads to solving non-linear equations. Several studies were devoted to a non-linear 
phenomenon in heat transfer [9-11]. Authors suggested various methods to solve the non-linear 
governing equations. Each method depends of the nature of the non-linearity.

In this study we are interested in the effect of temperature on the viscosity and the 
thermal behaviour of the lubricant. We solve the dynamic and energy equations under non-lin-
ear conditions considering that the viscosity decreases following an exponential law of tem-
perature as it is known in the literature.

The analytical solution is compared to a numerical modelling using a finite difference 
methods (FDM). The results show an excellent agreement.

We analyse the effect of the viscosity coefficient, β, on the velocity and the tempera-
ture in the thin lubricant film.

Problem description 

Consider the frictional system which 
consists of two moving bodies (1) and (2), 
fig.  1, separated by a thin lubricant film, 
with depth, δ, (the order of magnitude of a 
micron) and the length, L, (L  δ). Heat flux 
is generated by shear of the lubricant. We 
consider that the temperature at the entrance 
(x = 0) is uniform and equal to Te, and the 
walls (1) and (2) are at a uniform tempera-
ture T1 and T2, respectively.

Governing equations

The behaviour of the lubricant film is governed by the momentum eq. (1) which is 
simplified and the energy eq. (2). The dynamic viscosity is dependent of the local temperature 
following an exponential law eq. (3):
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The boundary conditions are given by the following equations:

	 1 2(0) , ( )u V u Vδ= = 	 (4)

	 1 2 e( ,0) , ( , ) , (0, )T x T T x T T y Tδ= = = 	 (5)

As a first step, we consider that ∂P/∂x = 0, so eq. (1) becomes:
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Figure 1. Simplified schema of a lubricant film 
between two moving solids



Laraqi, N., et al.: Analytical Modeling of the Thermal Behavior of a Thin Lubricant Film ... 
THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 117-124	 119

Usually, the convection term is less than the conduction one, then we can consider 
that:

	
2
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ρ λ∂ ∂
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 	

in eq. (2).
Equation (2) becomes:
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Analytical solution

By integrating eq. (1a) it follows that:

	 0( )

0

e T Tu A
y

β

µ
−∂

=
∂

	 (1b)

where A is a constant.
Substituting eq. (1b) in eq. (2a) we obtain:
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Multiplying eq. (2b) by ∂T/∂y, and integrating leads to:
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where C and D are constants.
Substitution eq. (2c) in eq. (1b) we find the velocity profile:
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where B is a constant.
The constants A, B, C, and D are determined by using the boundary conditions given 

by eqs. (4) and (5).

Particular case: T1 = T2 = T0

Considering that T1 = T2 = T0, we obtain all the constants under an explicit form:
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and the solutions (1c) and (2c) become:
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Considering the following dimensionless quantities:
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eqs. (1d) and (2d) become:
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Numerical modeling for validation

To validate the analytical solution, the governing eqs. (1) and (2) are solved by using 
a numerical modelling based on the FDM. The mesh is denoted i in the x-direction and j in the 
y-direction. The space steps are ∆x and ∆y, respectively.
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After the discretization of the governing equations we use an iterative method for their 
solving.

First, consider the momentum eq. (1) which can also be written:
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The discretization of eq. (8) by the FDM leads to:
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The viscosity μi,j and its derivative (dμ/dT)i,j are explicit functions of the temperature 
from eq. (3).

To prepare the iterative process, we extract ui,j from eq. (9) such as:
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The discretization of energy eq. (2) leads to: 
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That gives Ti,j under the following form:
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Equations (10) and (11) are completed by the boundary conditions given by eqs. (4) 
and (5).

To solve the systems (10) and (11) we use the iterative method (successive over 
relaxation - SOR) which is a generalization of and improvement on the Gauss-Seidel meth-
od. The principal of this method consists in the computing a given function at the iteration  
(k+1) ( 1)

,
k

i jf +  by using a linear combination between the value at the previous iteration  
(k) ( )

,
k

i jf  and that estimated during the iterative process fi,j. The latter uses a combination of tem-
peratures computed at the iterations (k) and (k+1). A relaxation coefficient ω is introduced for 
this process such as:
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Results

Validation

To validate the proposed analytical solution we consider a general case for which the 
temperature of walls are different and the viscosity varies strongly as a function of the tempera-
ture. We use the data given by tab. 1.

For this case, we determine the values of the constants A, B, C, and D such as:  
A = 4.473389025∙105, B = 37.97869477, C = 1.7105542822∙1014, and D = –8.7003788006∙10–7.

          Table 1. Data used for the comparison between analytical and numerical solutions
V1 

[ms–1]
V2 

[ms–1]
δ 

[m]
μ0 

[kgm–1s–1]
λ 

[Wm–1K–1]
β 

[K–1]
T0 

[0C]
T1 

[0C]
T2 

[0C]
0 50 10–6 0.085 0.5 0.14 80 80 100

Figures 2 and 3 compare the analytical and numerical results for velocity and tempera-
ture profiles, respectively. This comparison shows an excellent agreement between both methods.

Particular case: T1 = T2 = T0

The velocity profile through the 
thickness of the film is given by fig.  4 
for different values of the dimen-
sionless viscosity coefficient β*. The 
particular value β* = 0 corresponds 
to the case of a constant viscosity  
μ(T) = μ0 = C for which the velocity 
profile is linear (Couette flow). More β* 
value increases more the velocity profile 
is deformed and approaches the walls 
velocities.

Temperature profiles for the same 
conditions that those of the velocity are 
given by fig. 5. Because T1 = T2 in this 
particular case, the maximum of the tem-

perature is located at y = δ/2. The 
increasing in β* leads to the de-
creasing in the viscosity and then 
in the temperature level.

Other cases with: T1 ≠ T2

For these cases, we use the 
data given in tab. 1 and we con-
sider several values of the vis-
cosity coefficient, β. Considering 
the boundary conditions given by 
eqs. (4) and (5) we determine the 
values of constants A, B, C, and D. 
Table 2 gives the values of these 
constants for each value of β.
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Figure 2. Comparison of analytical and numerical 
solutions for the velocity profile
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for the temperature profile
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Figure 6 shows the velocity profile through the film. The velocity gradient is small 
near the coldest wall (here wall 1, y/δ = 0). This local behaviour is due to the effect of the viscos-
ity which is high for small temperatures. This behaviour is inversed near the hottest wall (here 
wall 2, y/δ = 1) also due to fact that the viscosity is small for high temperatures.

The temperature profile is given by fig. 7. We note that the maximum of temperature is 
moved from the centre to the hottest wall (wall 2) when the value of β increases. There is an asymp-
totic behaviour for which the temperature becomes linear across the film when the value of β is high.

Table 2. Values of A, B, C, and D vs. β values
β [K–1] A B C D
0.07 993690.8567 30.134790 2.975381267∙1014 –6.92414432∙10–7

0.14 447338.9025 37.978695 1.710542822∙1014 –8.70037801∙10–7

0.28 77424.7739 138.204373 1.285215005∙1014 –12.51374789∙10–7

0.42 7908.7368 1270.396848 1.695937629∙1014 –14.63060830∙10–7

Figure 4. Velocity profile in the film for different 
values of the viscosity coefficient β*  
(particular case T1 = T2 = T0)
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Figure 5. Temperature profile in the film for 
different values of the viscosity coefficient β* 
(particular case T1 = T2 = T0)
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Figure 6. Velocity profiles for cases with T1 ≠ T2  
(β = 0.07, 0.14, 0.28, 0.42 K–1)
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Figure 7. Temperature profiles for cases with  
T1 ≠ T2 (β = 0.07, 0.14, 0.28, 0.42 K–1)
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Conclusion

In this paper an analytical solution is proposed to determine the velocity and the tem-
perature profiles in a thin lubricant film separating two moving solids. The dynamic viscosity is 
considered dependant of the local temperature. The governing equations are then non-linears. 
The proposed solution is easy to use and allows to investigate several situations of lubrication. 
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The comparison of results given by the analytical solution to those obtained by a numerical 
solving shows an excellent agreement.

The results show that the dependence of the viscosity to the temperature has an im-
portant effect on the behaviour of the velocity and the temperature profiles in the lubricant film.
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c	 –	 specific heat, [Jkg–1K–1]
L	 –	 length, [m]
P	 –	 pressure, [Pa]
T	 –	 temperature, [K] or [0C]
u	 –	 local velocity, [ms–1]
V	 –	 velocity of the wall, [ms–1]
x, y	 –	 Cartesian co-ordinates, [m]
Δx, Δy	–	 space steps, [m]

Greek symbols

β	 –	 viscosity coefficient, [K–1]
δ	 –	 lubricant thickness, [m]
λ	 –	 thermal conductivity, [Wm–1K–1]
μ	 –	 dynamic viscosity, [kgm–1s–1]
ρ	 –	 density, [kgm–3]
ω	 –	 relaxation coefficient, [–]

Subscripts

0, 1,	 –	 reference, solid 1, 
2, e	 –	 solid 2 and entrance, respectively
i, j	 –	 meshes indexes
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