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In the paper, we describe the solution technique for solving the direct problem of 
the alloy solidifying within the casting mould with the phenomenon of material 
shrinkage taken into account. Due to the difference between densities of the liquid 
and solid phases, the shrinkage of metal often appears during the solidification. 
The investigated process is modeled by means of the solidification in the tempera-
ture interval basing on the heat conduction equation with the source element en-
closed which includes the latent heat of fusion and the volume contribution of solid 
phase. Whereas the shrinkage of metal is modeled by the proper application of the 
mass balance equation.
Key words: solidification, binary alloy, solidification in the temperature interval, 

shrinkage of metal.

Introduction

In the paper, we describe the method of solving the direct problem of the alloy solidi-
fying within the casting mould with the phenomenon of material shrinkage taken into account. 
Due to the difference between densities of the liquid and solid phases, the shrinkage of metal 
often appears during the solidification. Then, between the cast and the casting mould the air gap 
may form which generates the interfacial thermal resistance between the mould and the cast. 
The created thermal resistance determines then the mould heat flux which, in result, decreases 
the quality of the product causing some defects, such as cracks or oscillation marks.

 Creation of the heat resistance of the air gap between the ingot and crystallizer in the 
continuous casting process was investigated, for example, by Nawrat and Skorek [1] and Naw-
rat et al. [2]. For modeling the solidification process the authors used the Stefan problem and, 
on the basis of temperature measurements in the crystallizer walls, they determined the heat 
conduction coefficient of the gap. The heat resistance of the gap between the crystallizer, or the 
mould, and the ingot was also determined in papers [3, 4], whereas the interfacial heat transfer 
coefficient between the form and the cast was computed in works [5, 6]. 

 One of the authors of the current paper obtained also some preliminary results in in-
vestigating the phenomenon of metal shrinkage in the solidification process modeled by means 
of the 1-D Stefan problem [7, 8]. The Stefan problem is the name of the wide class of mathe-
matical models describing the thermal processes characterized by the phase transitions and it 
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is commonly used for modeling various problems concerning the solidification of pure metals 
[9-11]. Process investigated in this paper concerns however the solidification of alloy, therefore 
it is modeled with the aid of the so-called solidification in the temperature interval. In the Stefan 
model the liquid and solid phases are sharply separated by the interphase surface, whereas the 
solidification in the temperature interval model assumes the existence of the intermediate zone 
(called the mushy zone) between the liquid and solid phases where both phases coexist [12]. 
The used model is based on the heat conduction equation with the enclosed source element 
including the latent heat of fusion and the volume contribution of solid phase [13-16]. For the 
assumed form of function describing this contribution, the equation is transformed to the heat 
conduction equation with the so-called substitute thermal capacity. Thereby the considered dif-
ferential equation describes the heat conduction in the full homogeneous region (in solid phase, 
in two-phase zone and in liquid phase).

 Goal of the paper is to propose a procedure for solving the 1-D direct problem of the 
alloy solidification, that is to determine the temperature distribution in the investigated domain 
including the region of the ingot and the region of the casting mould, as well as the change of 
cast size associated with the material shrinkage. Technically the approach is based on the finite 
difference method supplemented by the procedure of correcting the field of temperature in the 
vicinity of the liquidus and solidus curves [15-17]. Whereas the shrinkage of metal is modeled 
by the proper application of the mass balance equation. Presentation of the proposed approach 
is supported by the results of the computational experiments illustrating the effectiveness and 
usefulness of the elaborated method.

Governing equations

Let us consider the plate of thickness, d(t), width, h, and height, l, (we assume d(t)  h 
and d(t)  l) occupied by the solidifying material, Ω, and bounded by the casting mould,  
Ωm. Scheme of the discussed region is presented in fig. 1. During the solidification process 

the air gap appears between cast and the 
casting mould, thus in the initial moment 
d(0) = d0. We assume in our analysis that 
the natural convection in the liquid phase 
as well as the strain energy of the mushy 
zone are neglected.

In region {( , ) : [0, ( )], (0, )}x t x d t t t∗Ω = ∈ ∈  the distribution of temperature in the so-
lidifying material is expressed by means of the following heat conduction equation:

	
2

2

( , )( , ) ( , ) ( , )= , ( , ) ,s
x

f x tT x t T x t T x tc v L x t
t x x t

ρ λ ρ
∂∂ ∂ ∂

+ + ∈Ω
∂ ∂ ∂ ∂

	 (1)

where c, ρ, and λ are the specific heat, mass density, and thermal conductivity coefficient, re-
spectively, vx – the velocity, L – the latent heat of solidification, fs – the volumetric solid phase 
fraction, T – the temperature, and finally t and x refer to the time and spatial co-ordinates, re-
spectively. The volumetric solid state fraction depends on the temperature, so we get:

	 s sf f T
t T t

∂ ∂ ∂
=

∂ ∂ ∂
	 (2)

Substituting relation (2) to (1) and transforming the obtained equation we have:

Figure 1. Region of the problem
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By introducing the so-called substitute thermal capacity:

	 sfC c L
T
∂

= −
∂

	 (4)

the previous equation can be written in the form:
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By assuming the linear variation of function fs with respect to temperature, then, since 
the following equalities must be satisfied:

	 ( ) 0 and ( ) 1s L s Sf T f T= = 	 (6)

where TL and TS denote the liquidus and solidus temperatures, respectively, we obtain:
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−
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−
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A number of various hypothesis concerning the form of function fs, describing the 
volumetric solid state fraction, can be found in literature. One of the possibilities is to assume 
the linear dependence of the solid phase on the temperature in the mushy zone [14-16] which, 
together with the previous described conditions, results in the form of relation (7). Differenti-
ating this function, we get:

	
d ( ) 1 for [ , ]

d
s

S L
L S

f T T T T
T T T

−
= ∈

−
	 (8)

Hence, the substitute thermal capacity is equal to:
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where cl, cm, and cs denote the specific heat of the liquid phase, mushy zone, and the solid phase, 
respectively. In eq. (5) the values of density and thermal conductivity coefficient vary as well 
in dependence on the temperature:
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The substitute thermal capacity, density, and thermal conductivity coefficient of the 
mushy zone depend on the solid phase contribution fs in the following way:
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In region 0{( , ) : ( , ), (0, )}m x t x d b t t∗Ω = ∈ ∈   of the casting mould the distribution of 
temperature is described by equation:
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ρ λ
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where cm, ρm, and λm are the specific heat, mass density, and thermal conductivity coefficient, 
respectively, of the casting mould material, and Tm – the temperature of casting mould.

The previous equations are completed by the following initial conditions:

	 0 0( ,0) ( ), [0, ]T x T x x d= ∈ 	 (13) 

where T0(x) > TL (the cast is at the beginning in the liquid phase) and

	 ,0 0( ,0) ( ), [ , ]m mT x T x x d b= ∈ 	 (14)

of course the consistency condition T0(d) = Tm,0(d0) must hold as well as the boundary conditions:

	 *(0, ) 0, (0, )l
T t t t
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	 (15)
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where α is the heat transfer coefficient and T∞ – the ambient temperature.
At the beginning of the solidification process there is no any air gap, it creates while 

the material solidifies, so in contact of the cast and the casting mould we define the fourth kind 
boundary condition in two forms:
–– with no air gap (the perfect contact) 

	 0 0( , ) ( , )m
l m

T d t T d t
x x

λ λ
∂ ∂

− = −
∂ ∂

	 (17)

–– with the air gap

	 0 0[ ( ), ] ( , ) ( , )[ ( ), ] m m
s m

T d t t T d t T d tT d t t
x R x

λ λ
− ∂∂

− = = −
∂ ∂

	 (18)

where R = [d0 – d(t)]/λg describes the thermal resistance with λg denoting the thermal conductiv-
ity coefficient of the air gap. 

Now let us assume that the total mass of the material is equal to m0 and it is constant 
during the time of modelled process. By denoting the masses of material in the liquid, solid, and 
intermediate (mushy zone) states as ml, ms, and mmz, respectively, we may formulate the mass 
balance equation:

	 0 l mz sm m m m= + + 	 (19)
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from which, after including the notation introduced in fig. 1, we get the relation:

	 0 ( ) [ ( ) )]l l l mz s l s sd hl hl hl d t hlρ ρ ξ ρ ξ ξ ρ ξ= + − + − 	 (20)

After simple transformations we obtain the formula determining the width of the cast 
in dependence of time:

	 0( ) ( ) ( )l mz
s l s l

s s

d t dρ ρ
ξ ξ ξ ξ

ρ ρ
= + − − − 	 (21)

Before appearing of the solid state, it means when the mass balance equation has the 
form:
	 0 l mzm m m= + 	 (22)

that is:

	 [ ]0 ( )l l l mz ld hl hl d t hlρ ρ ξ ρ ξ= + − 	 (23)

the width of the cast is expressed by the following equation :

	 0( ) ( )l
l l

mz

d t dρ
ξ ξ

ρ
= + − 	 (24)

Method of solution

The investigated problem is solved by using the implicit scheme of finite difference 
method, with the appropriate approximation of the boundary conditions, supplemented by the 
procedure of correcting the field of temperature in the vicinity of liquidus and solidus curves. 
Let us present the short description of this method. More detailed version, as well as its gener-
alization, can be found in literature [15-17].

In the cast region and in the mould region two following different meshes are intro-
duced:

	

0

0
0

( ); ; 0,1,..., { ( )},
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cast i cast cast
cast cast

mould j mould mould mould
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d d tx i k k i d t
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where [∙] denotes the integer part. It means that the nodes are placed with the constant step, 
except the last node in the cast region which is always equal to d(t). When the solidification 
process proceeds, the number of nodes in the cast changes according to the previous relation.

Distribution of temperature in moment tp+1, in the cast as well as in the mould, is de-
termined on the way of solving the proper system of equations with the aid of finite difference 
method. Next, the value of temperature in moment tp+1 in the node xi of the cast is corrected 
by using the following procedure. If the node xi in moment tp was in the liquid phase, its tem-
perature p

iT  was greater than the liquidus temperature, TL. Thus, to execute the next step of 
calculations we should use for this node the values of parameters corresponding to the liquid 
phase. If temperature 1p

iT +   in this node, obtained for the next moment tp+1, is still greater than 
the liquidus temperature, TL, then the node still remains in the liquid phase, so the temperature 

1p
iT +  can be accepted as properly determined and does not require any more attention.
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However, if the new calculated temperature 1p
iT +  is lower than the liquidus tempera-

ture, TL, it means that the node passes to another phase (mushy zone or solid phase), therefore 
the values of the thermal parameters should change, properly to the new phase. Let us assume 
that 1 ( , ]p

i S LT T T+ ∈ , which means that the node passes to the mushy zone. Change of the phase 
by the node happened in time Δt = tp+1 – tp, so for part of this time the values of parameters 
should correspond to the new phase, and therefore the temperature in node xi should be cor-
rected. We use for this goal the energy balance relation for the control element Vi with central 
node xi. Change of enthalpy of this element, connected with its cooling from temperature p

iT  
to temperature 1p

iT + , is equal to:

	 1( )p p
i l l i i iH C T T Vρ +∆ = − ∆ 	

where Cl is the substantial thermal capacity of the liquid phase and ρl – the density of the liquid 
phase. In real the loss of this heat performs in two stages. The first stage is connected with the 
cooling to the liquidus temperature, TL, and the second stage – with the cooling from the liqui-
dus temperature, TL. Thus, we have two equalities:

	 1 ( )p
i l l i L iH C T T Vρ∆ = − ∆ 	

	
1

2 ( )
p
ii mz mz L iH C T T Vρ
+

∆ = − ∆ 	

where Cm is the substantial thermal capacity of the mushy zone, ρmz – the density of the mushy 
zone, and whereas 

1p
iT
+

 – the corrected value of temperature in node xi. From the balance of 
enthalpy:

	 1 2i i iH H H∆ = ∆ + ∆ 	
we obtain the following formula for the corrected value of temperature in node xi:

	
1 1( )

p pl l
i L L i

mz mz

CT T T T
C

ρ
ρ

+ += − − 	

In the similar way, we can derive the formula for the corrected value of temperature in 
case when node xi passes from the mushy zone to the solid phase by obtaining:

	
1 1( )

p pmz mz
i S S i

s s

CT T T T
C
ρ
ρ

+ += − − 	

where Cs is the substantial thermal capacity of the solid phase and ρs – the density of the solid 
phase.

It is also possible to deduce the formula for the correction of temperature in case when 
node xi passes immediately from the liquid phase to the solid phase, excluding the mushy zone. 
Anyway, it is better to select the length of time step, Δt, so that such situation will not happen.

In the next step of the procedure we compute the contribution of the solid phase in 
volume, Vj, in moment, tp+1, by using relation (7) and we determine the locations of points ξl and 
ξs, bounding the liquid and solid phases, in the following way.

Let us select the nodes xi and xi–1 for which 1p
i LT T+ <  and 1

1
p

i LT T+
− >  and let us provide 

the line through points 1
1 1( , )p

i ix T +
− −  and 1( , )p

i ix T + . Point x for which the line takes value TL will 
be the sought point ξl. Thus we get:
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Similarly we provide the line through points 1
1 1( , )p

j jx T +
− −  and 1( , )p

j jx T +  for which 
1p

j ST T+ <  and 1
1

p
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− > . Point x for which the line takes value TS will be the sought point ξs, that is: 
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One step of calculations is ended by determining the width d(t) of the cast with the aid of eqs. 
(21) or (24).

Numerical example

Let us consider a numerical example for verifying the elaborated procedure. We ex-
amine the problem of solidifying cast of length 0.4 m (d0 = 0.4) within the mould of length  
0.2 m (b = 0.6) described by the following sets of parameters [18]: 
–– for the liquid phase 

cl = 1275 J/kgK, ρl = 2498 kg/m3, λl = 183 W/mK,
–– for the solid phase 

cs = 1077 J/kgK, ρs = 2824 kg/m3, λs = 183 W/mK,
–– for the mould 

cm = 620 J/kgK, ρm = 7500 kg/m3, λm = 40 W/mK.
Moreover, we take α = 250 W/m2K, L = 390000 J/kg, liquidus and solidus temperatures  

TL = 926 K and TS = 886 K, ambient temperature T∞ = 300 K, initial temperature of the solidify-
ing cast T0 = 960 K, initial temperature of the casting mould Tm,0 = 590 K, and thermal conduc-
tivity of the air gap λg = 15 W/mK.

The calculations were executed for three variants of the velocity vx included in the 
governing eq. (5):
–– the velocity is non-zero in the solid phase and mushy zone where it is defined according to 

the following formulas:
–– in the solid phase

	 1 mz s
x

s

dv
dt

ρ ξ
ρ

 
= − 
 

	

–– in the mushy zone

	 1 l l
x

mz

dv
dt

ρ ξ
ρ

 
= − 
 

	

where mzρ  denotes the average density of mushy zone in the given moment of time;
–– the velocity is non-zero only in the solid phase where it is determined by the relation:

	 1 l s
x

s

dv
dt

ρ ξ
ρ

 
= − 
 

	

–– the velocity is equal to zero in the entire considered domain.
It turned out that the results, obtained for these three variants of velocity variation, 

differ just slightly (we observed the differences only at the sixth decimal place), so we may con-
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clude that in the considered problem, for the previous taken values of parameters, the velocity 
of the solidifying cast may not be taken into account.

Figure 2 displays the changes of locations of 
points ξl and ξs  representing the liquidus and soli-
dus temperatures TL and TS, respectively, as well as 
the location of point d(t) denoting the cast bound-
ary, during the investigated solidification process. 
The figure shows that in moment 6870 seconds the 
whole cast is in the solid state, it means that the 
solidification ended in this moment. We may also 
observe the material shrinkage during the entire 
period of solidification. 

In fig. 3 there are presented the distributions of 
temperature, in the cast and in the mould, in the 
selected moments of the solidification process, 
including time t = 6870 of the final solidification. 

Whereas, in fig. 4 there are collected the distributions of temperature in the selected moments 
of time after the final solidification time, that is during the process of the cast cooling. The ob-
tained results are in line with our expectations.

Figure 2. Location of points ξl and ξs , 
bounding the liquid and solid phases in 
the cast, and point d(t), denoting the cast 
boundary, during the solidification process
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Results presented in figs. 2-4 have been obtained for the calculations made for 
the number of nodes n = 2000 for the cast and m = 600 for the mould and for the time step  
τ = 0.05. However, we decided to investigate more carefully the issue of the most effective grid. 
Therefore, we executed the calculations for various grids and we compared the results with the 
benchmark results (that is with the results received for n = 4000, m = 1200, and τ = 0.0005)  
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Figure 3. Distributions of temperature, in the cast and in the mould, in the selected moments 
of time during the solidification process (t = 6870 is the time of final solidification)
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to answer the question how much we can reduce 
the number of nodes and the time step to keep the 
results at the acceptable level. In tabs. 1-3 there 
are compiled the maximal absolute, the maximal 
relative, and the average relative differences be-
tween the results obtained for the various grids 
and the results obtained for the benchmark grid 
in the selected moments of time. As a conclusion 
we may state that for the time step τ = 0.02 the re-
sults received for the grids n = 1000, m = 300 and  
n = 2000, m = 600 differ only slightly from the 
benchmark results, for the time step τ = 0.05 we 
should take the grid n = 2000, m = 600 to conclude 
the same, whereas the time step τ = 0.1 seems to be 
already to big. However, the more dense is the grid, the longer time is required to get the results. 
So, if for any reason we need to have some results very quickly, we may use a grid with time 
step τ = 0.1, because even in this case the results are still tolerable. 

Table 1. Maximal absolute, ΔT, maximal relative, δT, and average relative, δTavg 
differences between the temperature calculated for the benchmark grid and 
the given grids for time step τ = 0.02 in the selected moments of time 
n (cast) 500 1000 2000
m (mould) 150 300 600
t [s] ΔT [K] δT [%] δTavg [%] ΔT [K] δT [%] δTavg [%] ΔT [K] δT [%] δTavg [%]

10 19.059 2.433 0.188 1.818 0.236 0.022 2.052 0.269 0.024
100 5.444 0.695 0.186 0.414 0.054 0.018 1.013 0.129 0.025
1000 1.336 0.176 0.087 0.360 0.039 0.008 0.285 0.038 0.020
4000 3.754 0.410 0.215 0.996 0.109 0.065 0.122 0.017 0.009
6850 10.054 1.14 0.786 2.779 0.314 0.219 0.275 0.031 0.006
10000 10.931 1.482 1.219 2.617 0.355 0.295 0.087 0.012 0.009
20000 4.785 0.964 0.800 1.149 0.232 0.193 0.037 0.008 0.006
37000 1.233 0.352 0.281 0.296 0.084 0.068 0.010 0.003 0.002

Table 2. Maximal absolute, ΔT, maximal relative, δT, and average relative, δTavg 
differences between the temperature calculated for the benchmark grid and 
the given grids for time step τ = 0.05 in the selected moments of time 
n (cast) 500 1000 2000
m (mould) 150 300 600
t [s] ΔT [K] δT [%] δTavg [%] ΔT [K] δT [%] δTavg [%] ΔT [K] δT [%] δTavg [%]

10 2.546 0.316 0.035 7.140 1.065 0.163 2.660 0.306 0.053
100 1.038 0.108 0.025 2.334 0.302 0.140 1.815 0.232 0.058

1000 0.724 0.078 0.026 1.294 0.172 0.089 0.755 0.099 0.053
4000 1.900 0.208 0.122 0.389 0.055 0.030 0.559 0.079 0.047
6850 4.631 0.525 0.373 0.708 0.081 0.018 0.697 0.081 0.036

10000 4.696 0.637 0.528 0.096 0.013 0.007 1.058 0.143 0.119
20000 2.063 0.416 0.346 0.043 0.009 0.0044 0.094 0.464 0.078
37000 0.531 0.152 0.122 0.011 0.003 0.002 0.119 0.034 0.027

Figure 4. Distributions of temperature, in 
the cast and in the mould, in the selected 
moments of time during the process of the 
cast cooling
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Table 3. Maximal absolute, ΔT, maximal relative, δT, and average relative, δTavg 
differences between the temperature calculated for the benchmark grid and 
the given grids for time step τ = 0.1 in the selected moments of time 
n (cast) 500 1000 2000
m (mould) 150 300 600
t [s] ΔT [K] δT [%] δTavg [%] ΔT [K] δT [%] δTavg [%] ΔT [K] δT [%] δTavg [%]

10 6.940 0.888 0.073 8.858 1.144 0.182 6.538 0.869 0.083
100 2.187 0.280 0.071 2.961 0.382 0.162 2.503 0.320 0.081
1000 0.669 0.088 0.046 1.688 0.219 0.115 1.034 0.137 0.072
4000 0.890 0.097 0.036 0.878 0.124 0.065 0.797 0.113 0.066
6850 2.741 0.311 0.182 0.196 0.022 0.005 0.906 0.106 0.043
10000 2.010 0.273 0.228 1.033 0.140 0.113 1.417 0.192 0.161
20000 0.888 0.179 0.149 0.452 0.091 0.074 0.625 0.126 0.104
37000 0.229 0.065 0.052 0.116 0.033 0.026 0.161 0.046 0.036

Conclusions

Aim of this paper was to present the solution method for the direct alloy solidification 
problem taking into account the air gap formed between the cast and the mould. Mathematically 
the process was modeled by means of the so-called solidification in the temperature interval, that is 
with the aid of the heat conduction equation with the substitute thermal capacity describing the dis-
tribution of temperature in the solid phase, two-phase zone, and liquid phase. Whereas the phenom-
enon of material shrinkage was modeled by the proper application of the mass balance equation.

Goal of the described procedure was to determine the temperature distribution in the 
investigated domain including the region of the ingot and the region of the casting mould, as 
well as the change of cast size caused by the material shrinkage. The calculations were per-
formed for three variants of the velocity included in the governing equation and for various 
grids introduced in the considered domain to examine the influence of the grid density on the 
quality of results. Obtained results are very satisfying, considering their quality as well as the 
fastness of the procedure, so they are very promising for the future since we plan to use the 
developed procedure in solving the appropriate inverse problems.

Nomenclature
b	 –	 length, [m]
C	 –	 substitute thermal capacity, [Jkg–1K–1] 
c	 –	 specific heat, [Jkg–1K–1] 
d	 –	 thickness of the plate, [m] 
fs	 –	 volumetric solid state fraction, [–] 
ΔHi	 –	 change of enthalpy, [J]
h	 –	 height of the plate, [m] 
k	 –	 step of the mesh, [–]
L	 –	 latent heat of solidification, [Jkg–1] 
l	 –	 width of the plate, [m]
m	 –	 mass of the alloy, [kg] 
n	 –	 number of nodes, [–] 
R	 –	 thermal resistance, [m2KW–1]  
T	 –	 temperature, [K]  
TL	 –	 liquidus temperature, [K] 
TS	 –	 solidus temperature, [K] 

T∞	 –	 ambient temperature, [K]
t	 –	 time, [s] 
t*	 –	 final time, [s]  
Vj	 –	 control volume, [m3] 
vx	 –	 velocity, [ms–1]
x	 –	 spatial variable, [–]

Greek symbols

α	 –	 heat transfer coefficient, [Wm–2K–1)] 
δ	 –	 relative percentage error, [%]
Δ	 –	 absolute error, [–]
λ	 –	 thermal conductivity, [Wm–1K–1]
ρ	 –	 mass density, [kgm–3]
τ	 –	 time step, [–]
ξl(s)	 –	 location of TL(S), [m]
Ω	 –	 considered region, [–]
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Subscripts

l	 –	 liquid phase
m	 –	 mould

mz	 –	 mushy zone
s	 –	 solid phase
0	 –	 initial
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