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In this paper, we present a numerical method based on random sampling for a par-
abolic problem. This method combines use of the Crank-Nicolson method and
Monte Carlo method. In the numerical algorithm, we first discretize governing
equations by Crank-Nicolson method, and obtain a large sparse system of linear al-
gebraic equations, then use Monte Carlo method to solve the linear algebraic equa-
tions. To illustrate the usefulness of this technique, we apply it to some test prob-
lems.

Key words: Monte Carlo method, Crank-Nicolson method, system of linear algebraic
equations

Introduction

Recently there are many methods to solve heat conduction equations that are used for
characterization thermal problems, Tian et al. [1] combined the Crank-Nicolson and Monte
Carlo methods to solve a class of heat conduction equations. Jia et al. [2] used the semi-inverse
method to establish a variational principle for an unsteady heat conduction equation. Liu et al.
[3] adopted He's fractional derivative to study the heat conduction in fractal medium.

In this paper, we will consider a problem of determining an unknown function in the
heat conduction equation:

u, —a(Ou, = f(x,1), 0<x<l, >0 (1)

with initial condition u(x, 0) = ¢(x), 0 < x < 1, and boundary conditions u(0, 7) = a(?), u(1, {) =
= B(1), t> 0, where a(¢) > 0 is a known function and ¢(x), a(?), 5(), and f{x, f) are known continu-
ous functions.

The Crank-Nicolson method is employed to discretize the problem domain. Owing to
the application of the Crank-Nicolson method, a large sparse system of linear algebraic equa-
tions is obtained, then we use Monte Carlo method to solve large systems of linear algebraic
equations AX=b, where 4 € R™" and X, b € R"[4]. Monte Carlo algorithms have many advan-
tages. For one thing, these algorithms are parallel algorithms, they have high parallel efficiency
[5], for another thing, Monte Carlo methods are preferable for solving large sparse systems of
linear algebraic equations, such as those arising from approximations of partial differential
equation [6-9].
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Crank-Nicolson method for discretization

The domain [0, 1] x [0, 7] is divided into an n x N mesh with the spatial-step size & =
= 1/n in the x direction and the time-step size ¢ = T/N, respectively. Grid points (x;, £, ) are de-
fined by x; = ih, t, = kt, (0 <i<n, 0 <k <N). The notation u* is used for the finite difference ap-

proximation of u(ih, kt).We define the operators:

k12 = % Uk + uk+1), 8, uk+1/2 = %— (k! — k), 52uk =
1
=
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Omit R, from eq. (8), consider initial condition and boundary conditions at point (x;,,

t,), we have:
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S;uk+1/2 — a(tk+l/2)5§ul.k”/2 =f (X tn), 1<i<n—1, k>0 ©)]
with u® = @(x,), 0 <i <n,and uf =a(), ut =p(4), k> 0.
According to eq. (9), we have:
_ a(tk+1/2)r ulk__‘l.] + [1 + a([k+l/2)r]ul((+] _ a(tk;”Z)r ui[:-_‘l_] —
a(t r a(t r
=2y - ot s ) 10)
where r=1/h*,1<i<n—-1,k>0.
Equation (10) can be written as the following Matrix form:
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Discussion of the numerical result

In this section, we perform numerical tests for the algorithm described in [1].
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Example 1. Consider the problem u,—a(t)u,, =f(x,1),0<x<1,¢>0 with u(x, 0)=
=(e*+eY)e—e5,0<x<1;u(0,)=2e¢ —landu(l,?)= (e +e)—e, t >0, where a(t) = ¢’
and f(x, t) = e**). The exact solution is u(x, ) = (¢ + e")e® — e*.

The results obtained for u(x, ¢) are presented in tab. 1.

Table 1. Result for u with y=0.98, h = 0.1, = 0.005, k = 11, and N = 5000

; Uk Usy Ugk
Numerical Exact Numerical Exact Numerical Exact

7 4.556774 4.556724 4.704200 4.703988 5.614308 5.613979
20 4.964895 4.964533 5.161609 5.161554 6.195289 6.195495
50 6.153402 6.153264 6.497873 6.495325 7.891494 7.890568
60 6.647447 6.647192 7.052375 7.049517 8.595858 8.594884
80 7.830298 7.829717 8.376961 8.376323 10.282640 10.281106
100 9.348352 9.347527 10.084721 10.079323 12.444029 12.445429

Example 2. Consider the problem u, — a(f)u,, =f(x, ), 0 <x<1,¢> 0 with u(x,0)=e",
0<x<1;u(0,)=2e¢ —land u(l, H)=e'*"’/3,t>0, where a(t) = >+ 1 and f{x, £) = xt* — x. The
exact solution is u(x, t) =e*++°/3 4+ x¢3/3 — xt.

The results obtained for u(x, ¢) are presented in tab. 2.

Table 2. Result for # with y=0.98, # =0.1, 1= 0.01, k=15, and N = 2000

; Uik Usi Ug
Numerical Exact Numerical Exact Numerical Exact
10 1.212557 1.211843 1.772773 1.772893 2.628217 2.629488
20 1.333497 1.333730 1.921650 1.920463 2.832696 2.834588
40 1.646830 1.646405 2.329271 2.323305 3.409811 3.407616
60 2.111359 2.111290 2.964007 2.964443 4.342121 4.341071
80 2.853976 2.854390 4.045561 4.037469 5.927285 5.926223
100 4.127121 4.125985 5.936542 5.921368 8.728614 8.730917

Conclusion

In this paper, an alternative method is proposed to solve a parabolic problem. We first
discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of
linear algebraic equations Ax = b, then use Jacobi over-relaxation iterative method and Monte
Carlo method to solve the algebraic equations. The numerical results show that the proposed nu-
merical method is accurate to estimate the exact solutions of eq. (1).
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