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An improved moment model is proposed to solve the population balance equation
for Brownian coagulation in the continuum-slip regime, and it reduces to a known
one in open literature when the non-linear terms in the slip correction factor are ig-
nored. The present model shows same asymptotic behavior as that in the continuum
regime.
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Introduction

Population balance equations (PBE) are general mathematical framework for model-
ing of particulate systems [1]. The behavior of these systems is largely governed by the collision
rate, i. e., the number of collisions per unit time per unit volume of aerosol. The calculation of
collision rate is simplified by the fact that particles are typically found at low volume fractions in
the gas phase. Under such dilute conditions, collision can be modeled as two-body interactions
wherein thermal/Brownian motion drives collisions. In the framework of mono-variants internal
co-ordinate and time for each particle, the PBE characterized as Smoluchowski equation, which
takes the form:

ang;, H_ % Iﬁ(U, v—v)n(vH)n(L - v, t)dv, - Iﬁ(ul ,0)n(v, Hn(v,, H)dv, (1)

in which n(v, f)dv is the number of particles per unit spatial volume with particle volume from v
to v + dv at time #; and S is the collision kernel/collision rate coefficient of coagulation.

The PBE can be viewed as the Boltzmann's transport equation in form. For its own
non-linear integro-differential structure, only a limited number of known analytical solutions
exist for simple coagulation kernel. The analytical solution of PBE, especially in terms of a par-
ticle size dependent coagulation kernel, still remains a challenging issue. Because of the relative
simplicity of implementation and low computational cost, the moment method has been exten-
sively used to solve most particulate problems, and has become a powerful tool for investigating
aerosol microphysical processes in most cases [2-4]. In the conversion from PBE to the moment
equation, the k-th order moment M, is defined:
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M, =Ivkn(u)dv 2

By multiplying both sides of the PBE, eq. (1), with v* and integrating over all particle
sizes, a system of transport equations for M, are obtained. In a spatially homogeneous system,
the particle moments evolving with time due to the Brownian coagulation can be expressed:

dM,

-1 [[[(o+v))k —vk —vF]B(L, L) (L, Hn(v,, t)dvdy,, (k=0,1,2,...)  (3)
dr 200

The minimum set of moments required to close the particle moment equation is the
first three, M, M, and M,. The zeroth moment represents the particle number concentration, the
first moment represents the particle volume concentration, and the second moment is a
poly-dispersity variable. It should be pointed out that M, remains constant due to the mass con-
servation requirement, and its initial conditions for the particle moment evolution equation can
be note das M, M,, and M,,, respectively.

Accurate calculation of particles moment evolution requires accurate collision kernel
coefficient. When the particle radius of at least one object is large relative to the mean persis-
tence distance of the colliding entities, the continuum approximation is satisfied and
Smoluchowski's 8 applies:

/3=4T{kB—T+kB—T](ai +a;) 4)
f i J

where f; and f; are the friction factors of type i and / entities, a; and ¢, — the radii of type i and type /
entities, respectively, kz —the Boltzmann's constant, 7— the temperature of colliding entities and
background fluid. The friction coefficient is a quantity fundamental to most particle transport
processes. In the continuum regime, the Stokes law form holds for a rigid sphere as f; = 6nua,,
and p is the gas viscosity.

In fluid dynamics, the Cunningham correction factor or Cunningham slip correction
factor is used to account for non-continuum effects when calculating the drag on small particles.
The derivation of Stokes Law, which is used to calculate the drag force on small particles, as-
sumes a no-slip condition, which is no longer correct at high Knudsen number. The
Cunningham [5] slip correction factor allows predicting the drag force on a particle moving a
fluid with Knudsen number between the continuum regime and free molecular flow. The slip
correction factor C, is given by:

4;
CC:1+Kn[A1 +A2eKnJ (5)

with4,=1.165,4,=0.483, and 4, =0.997 obtained in experiments [6]. The Knudsen number is
a dimensionless number defined as the ratio of the molecular mean free path length, A, to a repre-
sentative physical length scale (the particle radius, a, in the present study), i. e., Kn =A1/a.
Recently, Yu et al. [7] proposed a moment mode for particle PBE in the contin-
uum-slip regime with a linearized slip correction factor as C, =1 + AKn (4 = 1.591), and have
solved it analytically. In the present work, we will improve their moment model in the contin-
uum-slip regime without neglecting the non-linear terms in the slip correction factor, and ana-
lyze its asymptotic behavior. The results show that both the improved moment model and its
simplified forms have the same asymptotic solution as that in the continuum regime [8].
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Mathematical formulations

The collision kernel in the continuum-slip regime can be re-written based on particle

volume:
2kyT

3u
The slip correction factor can be expanded with Taylor series at the point (the particle
mean volume u = M,/M,):

C.()=1+g,(w)+g (W)L —u)+g, () (L—u)? +- (7)

and the corresponding functions g, g, and g, are defined:

B=

[C(w)v;13 +C (v, )1);”3](0}/3 +U}/3) 6)

B A3u1/3
go(u)=u17(Al+Aze z J (82)
A3
1 4de 5 4, 1 B A5
g1(”):—§ 2 . 3_§u4/3(141+1426 B J (8b)
Ajul3
2 B L7\ | Aye B A, (4B + Ayu'?
gz(u)zgm[/ll +Aze B j-‘rﬁ 2 :;uz 3 ) (80)

where the constant is defined as B = Kny(M,/M,,)"3, with the initial Knudsen number based on
particle moment is Kn, = A/u, = A(4nMy,/3M,)"3. Then the ordinary differential equation for
particle moment evolution can be obtained:

e (”)](1 +WJ+& (u)“( Moy Mys _ MosMys J+

Ay _ gy 2 M, M, M
dt g, (W’ M2M0+M5/3M1/3 ) My M, +1 +lJrM—l/st
£ M2 M? M, M, M2
dm,
=0 )]
dt ~
M, M, +M5/3M4/3M0 _
M, M M?2 M3
[+g, ()] 1+ =245 |1 g (u)u 1 1 +
0 M} ] _1_M2/3M4/3
WMy g w2 My
dr 27 MiMg Mgy My M My;3 My
+ +1+ -
M3 M# M2
+g,(wu?| ! : 1
5 M2M0+M5/3M4/3M0
M? M)

with the constant B, =2k 7/3u. Using the Taylor series expansion, the higher and fractal particle
moment can be calculated by the first three-particle moments M,, M, and M, [9]:
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M, = % uk 2k (k= 1)M,, — k(e =2)M, +§u" (k=D(k -2)M, (10)

Their accuracy has been discussed in our previous work [10, 11], and then the ordinary
differential equations for particle moment can be obtained:

o _
—a[l+g0(u)](2Mc2 -13M, -151) +
dMm 1
=—B M +—g (wu(M? -11M, +10) —
P 2 27g1( u( c c )
1
—§g2(u)u2(Mc2 -20M . +19)
M, i i
=0 11
4 ] ) (11)
1
—a[lJrgO(u)]QMc2 —-13M, -151) +
dMm, 1
+—g (Wu(dM? +37M, +41) +
dt 1 27g1( ) ( C C )
2
—§g2(u)uz(Mc2 + 7M. -8)

with the dimensionless particle moment M. = MM,/M ?. The geometric standard deviation, o,
of particle size distribution is the function of dimensionless particle moment can be noted as
In’c = In(M)/9 [2]. The ordinary differential eq. (11) can be solved numerically with fourth
Runge-Kutta method with its initial conditions [9, 12].

Simplified moment model

In the case of neglecting the non-linear term in the slip correction factor, the functions
g0, &> and g, are simplified:

BA, 1 BA, 2 B4,
go()— ’gl() ?a g, (uu 2__T (12)
3u 9u

and the corresponding moment model is reduced to:

M, _ BZM{——QMZ ~13M, —151)—%%(51\42 64M —103)}

dr 1/3
dm,
=0 13
gy (13)
d](‘l/lz =28 Mz[——(ZM2 -13M, —151)—%%(2M2 4M —160)}
t u!

The simplified moment model is that Yu ez al. [9] have obtained in their work, but with
a little difference in the coefficient (i. e., 4, = 1.257 or 4, = 1.165, but 4 = 1.591).
In some cases, the collision kernel may be written [13]:

B =Bch(u)(ui‘”3 +U;”3)(u}/3 + u;/3) (14)
which means

C.(v)~C.(v;)~C.(u) (15)
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It is only suitable for narrow particle size distribution or small Knudsen number. And
the corresponding ordinary differential equation for particle moment evolution can be simpli-

fied:
M, (2M§ —-13M, -151)

B, M2C (u
dt 81 2MCe(w)
dMm,
=0 16
" 2 (16)
2QM 2 —-13M, —151
t

The asymptotic analysis of moment model
It can be found that:

. .M . . . .

limu=lim —- = lim g, (1) =0; lim g, (Wu=0; lim g, (Wu? =0; limC,(u)=1 (17)
t—o t—o MO U—>o0 U—o0 U—>o0 t—o

then the particle moment evolution eq. (11) and its simplified models, eqgs. (13) and (16), are also

reduced to the same as the moment model in the continuum regime, and its analytical and as-

ymptotic solutions have been obtained by Xie and He [14] and Xie and Wang [8], respectively.

Discussion and conclusions

In the present study, we have proposed an improved moment model for particle PBE
in the continuum-slip regime. This model can be simplified to the existing models in the litera-
tures [7, 9] using the linearized slip correction factor. It has the same asymptotic behavior as that
in the continuum regime. The linearized moment model becomes simpler so that its analytical
solution can be obtained. Due to the introduction of non-linear terms in the slip correction fac-
tor, the analytical solution of present moment model is difficult to obtain. Even if the analytical
solution is obtained with some special mathematical technique, e. g., the exponential function
substituted by a polynomial or a Taylor series [14], it can only proof that the present model has
some advantages in mathematics, but the structure of the analytical solution will become too
complicated to be used in practice. Moreover, the expansion of the exponent function will bring
more constraints in physics and mathematics, which makes the effective interval for particle
dimensionless moment, M., of the analytical solution much smaller [7, 11, 14]. In theory, the
geometric standard deviation of aerosol particle size distribution can be an arbitrary value; this
confined interval of M. reveals the inherent drawback in the moment method.

Another reason for the unnecessary to obtain the present model's analytical solution is
that the relative error of the solution becomes much larger at high Knudsen number. In essence,
the slip correction factor is a drag correction [15], rather than the correction of the collision ker-
nel itself. Although the corrected formula of particle resistance in fluid can be well applied in the
wide range from free molecular to continuum regime, the collision kernel based on the slip cor-
rection factor will become infinite and unreasonable in physics at higher Knudsen number. Our
previous works [16], have provides a useful attempt to deal with the non-physical phenomenon,
but the analysis and calculation of the moment model have introduced some empirical formula.
A better approach of mathematical physics to calculate the moment model accurately across the
entire particle size regime will be presented in the future.
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