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In this paper, we apply the modified variational iteration method to a generalized
Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation. The numerical solu-
tions of the initial value problem of the generalized Hirota-Satsuma coupled KdV
equation are provided. Numerical results are given to show the efficiency of the
modified variational iteration method.
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Introduction

Thenon-linear equations arisein many fields, such as nanoscal e hydrodynamics, fluid
mechanics, thermodynamics and others, which play an important role in the study of non-linear
physical phenomena. In this paper, we consider a generalized Hirota-Satsuma coupled KdV
equation:

Uy :%(uxxX —6uu, ) +3(W),, V; =V, +3Uv,, W, =-W,, +3uw, (1)

When w = v* and w = v, eqg. (1) reduces to a complex KdV equation [1] or the
Hirota-Satsuma equation [2], respectively. In the passed decades, many numerical or analytical
methods are proposed to solve eg. (1), such asvariational iteration method (VIM) [3, 4], reduced
form of differential transformation method [5], and homotopy analysis method [6]. The numeri-
cal simulation of the generalized Hirota-Satsuma coupled KdV equation helps to model the
waves. Inthispaper, wewill useamodified variational iteration method (MVIM) [7] for solving
theinitial value problems associated with eq. (1). Compared results of the numerical solutions
and the exact solutions are presented, which shows that the MVIM is efficient for solving the
generalized Hirota-Satsuma coupled KdV equation.

Modified variational iteration method

To illustrate the basic idea of MVIM, let us consider the following non-linear partial
differential equation:

Lu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t)
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u(x, 0) = f(x) (2)

where L = d/dt, Ris alinear operator with the partial derivative with respect to x, Nu(x, t) —a
non-linear term, and g(x, t) — an inhomogeneous term.

For speeding up the convergence and reducing the computation cost of VIM, the
MVIM was proposed in [7]. The MVIM for eg. (2) is constructed by the following variational
iteration formula:

Unya (%, 1) = Uy (X 1) = ;I){ R{U, (X,6) = Uy 1 (X )] +[G (X,6) =Gy (. 5)]} s

with u_; = 0, uy = f(X), u; = Uy — j(t)[R(u0 —U,)+(Gy —G_;) —gldé, and G,(x, t) is given by
Nu,(%, t) = G,(x, t) + O(t"?) .

Applications and results

We consider the numerical solution of eg. (1) with the following initial conditions:
u(x, 0) = (U/3)(B — 2k?) + 2k2tanh?(kx), v(x, 0) = (—4k?cy/3c,2) (B +k?) + (4k?/3c,?) (B + k?)tanh(kx),
and w(x, 0) = ¢, + ¢;tanh(kx), where k, c,, ¢, # 0, and 8 are arbitrary constants.

By MVIM, it follows the iteration formul ae:

s (D = Uy (X 1)+ | {%[unm (%) ~ Uy 10 ()] +1G (0, E) ~ Gy (X,g)]}dg
0
Va0 =V 040~ HlVn (6 2) = Vo (D] - [H (58) ~ Hoa (0 EE (3

W1 (X 1) = W, (X, 1) = i{ [Whoo (% &) = W 100 (% 6)] = [Qn (X, 6) = Qo (%, E)] )

where G,(X, t) is obtained from 3u,u,, —3(V,W,)y = G,(X, t) + O(t™?1), and H,(X, t) is defined by
—3U,Vpy = Hp(X, t) + O(t"*1), and Q,(x, t) isgiven by —3u,w,,, = G,(X, t) + O(t™1), u_y, v_4, w4, G_4,
H_;, and Q_; are set be zero.

Weusetheeqg. (3) with theinitial guessesu, = u(x, 0), v, = v(X, 0), and w, = w(x, 0), and
obtain thefourth order approximated sol utions. We remark that the bell-type solution u(x, t) and
the kink-type solutions v(x, t), w(x, t) of eq. (1) are given by:

u(x, 1) :%(ﬁ —2k?) + 2k tanh [k (x + B1)]

4"2;0 (B +k2)+ 22 (5 + k2 tanh{k(x-+ )]

v(x t)=- 3 3

wW(X, t) = ¢, + ¢ tanh[k(x + St)]

respectively. In this example, k=0.2, 8 = 0.1, ¢, = 1.5,and ¢, = 0.1.

Tables 1-3 list the relative errors of the MVIM solutions u,, v,, and w,, respectively.
Figure 1 plotsthe compared results of the MVIM solution u, and the bell-type solution u(x, t) of
eg. (1). The numerical results for the approximation v, and the kink-type solution v(x, t) are
shown in fig. 2. The numerical solution w, and the kink-type solution w(x, t) are also plotted in
fig. 3. Different fromthe VIM, the MVIM workswell for thisexample. Particularly, MVIM so-
lutions agree well with the exact solutions of eg. (1) when —50 < x, t < 50.
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Table 1. Relativeerrorsof MVIM solutions, u,

T xX=2 x=4 X=6 x=8 x=10

1 5.31-10°° 2.22.10710 4.06-10°1° 9.29-10 1 3.29-10%
2 1.60-10”7 7.35:10°° 1.27-10°8 2.91-10°° 1.14-107°
3 1.14-10°° 5.7510°8 9.50-10°8 2.16:10°8 9.27-10°10
4 45410 2.49-1077 3.93.107 8.93.10°8 4.16:10°°
5 1.31-10° 7.76-107 1.18-10°° 2.67-107 1.35-10°8

Table 2. Relativeerrorsof MVIM solutions, v,

T X=2 xX=4 X=6 x=8 x=10

1 1.55-107%? 14110 5.35:10% 2.08-10713 1.09-107%?
2 4.03.101 451.10°%0 1.69-1071° 7.29-10°12 3.48-101
3 2.37-107%0 3.42:10°° 1.26-107° 6.02:10%* 2.64-10710
4 7.10-10710 1.44.10°8 5.25.10°° 2.73-10710 1.11-10°
5 1.30-10° 4.38.10°8 1.58-10°® 8.91.10°%0 3.39:10°°

Table 3. Relative errorsof MVIM solutions, w,

T X=2 x=4 X=6 x=8 x=10

1 147102 1.29-101 4781012 1.83-10°13 9.58.10°13
2 3.82:101 4111071 1.51.1071° 6.44.10%2 3.06:101
3 22410710 3.11-10°° 1.13-10° 531101 2.32:10710
4 6.69:10%0 1.31-10°® 4.69:10°° 2411010 9.78:10°%°
5 1.22:107° 3.98:10°8 141108 7.87:10°10 2.98:10°°

Figure 1. The compared resultsfor the approximation, u, (a) and the exact solution, u (b)
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Figure 3. The approximation, w, (a) and the exact solution, w (b) when —-50 < x, t <50
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