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This paper applies an improved Hirota bilinear differential operator to obtain a
Caudrey-Dodd-Gibbon-Sawada-Kotera-like (CDGSK-like) equation, and two
classes of rational solutions are obtained.
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Introduction

Non-linear partial differential equations (NLPDE) are attracting more and more atten-
tion [1-5] in thermal science and fluid mechanics, and it becomes more and more important to
solve NLPDE exact solutions. Rational solutions to integrable equations have been considered
systematically by using the Wronskian formulation and the Casoratian formulation [6]. Particu-
lar examples include the Korteweg-de Vries (KdV) equation, the Boussinesq equation, and the
Toda lattice equation [7-9].

An CDGSK-like differential equation

In order to study the solution solutions of NLPDE, Hietarinta [10] introduces the fol-
lowing differential operator:

DDy (fg) = (0, =0, )" (8, =0, )" Lf (6, x)g (¢, X )|y s (1

where f{¢, x) and g(t, x) are differentiable function of x and ¢, and m and » are non-negative inte-
gers.

The CDGSK equation [11-13]:
u, +(60u® +30uu,, +u,, ), =0 )

is a higher-order generalization of the celebrated KdV equation. It is a very important equation
in fluid mechanics which can be expressed:

(Dth +Dx6 )(fJ[) =2ftxf _2ftfx +2fxxxxxxf _lzfxxxxxfx +30J[xxxxfxx -20 xix (3)

under the transformation u = (In f),,. According to generalized bilinear differential equations in
[14], we introduce a new kind of bilinear differential operator:

Dg,tDZ,x (fJ[) = (at +ap 6t' )m(ax+ ap 8x’ )n[f(t’x)g(t,ax,)]|t’:t,x’:x (4)
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where as = (_1), ,ls—rp(s)mod p, s#6k, keN
(-1 s=r,(s)ymod p, s#6k, ke N
According to the previous definition, we have:

as;=-1, a3 =1, a}=1a}=-1,aj =1, af =-1 (2)
D3 Dy, () =2fuf =21, [c: DI, (f)=20/3 (6)
(D3, Dy + D3 )W) =2f S =2/ .S +20f 3 =0 ()

This equation possesses the same bilinear type as the standard CDGSK one. We take a
dependent variable transformation:

u=(Inf), (3)

by a general Bell polynomial theory [15]. Then we obtain a CDGSK-like non-linear differential
equation:
2u, —20(u,, +2uu,)? =2u, —20(u,, )?> —80uu u, —80u?(u,)?> =0 )

which is linked to the generalized bilinear eq. (7). More precisely, by virtue of the transforma-
tion (8), the following equality holds:

(D, Dy, +D¢ 2 —2f f 42012

5 S’tfz 2D _2ff /;J; P20 gy, —20(u,, +2uu,)? =0 (10)

Two classes of rational solutions

Solution 1. By symbolic computation with MAPLE, we look for polynomial solutions
as the form of:

M=

f=2

7 A
c.xt/ 11
y

i=0=0 °~

where the ¢};s are constants, and find 26 classes of polynomial solutions to the generalized
bilinear eq. (7), and we obtain two classes of rational solutions to CDGSK-like equation:

i —3603 2x2 4 52 2 G0l oo
u:7x: 40 20 40 (12)
. €03 0.3 , 02, 3 3, o1 .3 P
— 11X +——1Ix° +Ccpt’ +——Xx° +Cptc +cyt+C
40 60 03 120 02 01 00
2.3 . 2.4
Cop X+ degx? 8640c,, e 28807 c;, oy 360-2880% ¢,
f. 1440 o1 o1 g (13)
u:—:
2-14402¢3 360-28802c*
cort + 1_ys + cgox? 2880cy x3+ 20 x2 + . o X+ ¢y
Co1 Co1 Co1

Solution 2. We find another class of polynomial solutions to the generalized bilinear
eq. (7). The polynomial solutions are the form of:
fm = (CZ,mx2 + cl,m‘x + CO,m )tm (14)

Obviously: )
f=fo+ i+ S+t foa S w=2 2 cyxit) (15)

i=0,=0
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We have another class of rational solutions to CDGSK-like equation:

2 m i1
f 2 2 leyxTit)
X =
I

u=>t =00 (16)
A Z Z cijxf t/
=0,=0
when f=fi= c,jx* + ¢,5x + ¢op and ¢, =0, ¢, = 1, ¢, = ¢, we obtain the simplest form of rational
solutions to CDGSK-like equation:

—_

u= 17)
X+c
whenf=f +f,and ¢, =c;;=c¢y =0, ¢,y =2, ¢,y = ¢y = 0, we have:
2xt +4x +1t (18)

X2t +xt+2x +t
Conclusions

In this paper, we apply the improved Hirota bilinear differential operator to obtain an
CDGSK-like non-linear differential equation. Then, we obtain two classes of rational solutions
to the CDGSK-like non-linear differential equation, which are generated from polynomial solu-
tions to the corresponding generalized bilinear equation. These solutions are very basic for the
rogue wave and lump solution in ocean. In the further research, we can study rogue wave solu-
tion and lump solution through rational solution.
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